Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полярность молекул. Диэлектрическая проницаемость растворов

    ПОЛЯРНОСТЬ МОЛЕКУЛ. ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ РАСТВОРОВ [c.17]

    Измерив диэлектрические проницаемости раствора и растворителя и их плотности, рассчитывают Pi, 2 и Pj. Считая, что поляризация растворителя не изменяется с введением растворенного вещества (здесь допускается некоторая неточность), находят искомую поляризацию Р при данной мольной доле N . Такие измерения и расчеты производят для растворов с различной мольной долей растворенного вещества. Полученные экспериментальные данные экстраполируют к бесконечному разведению и находят поляризацию Роо, свободную от погрешностей, возникающих вследствие взаимодействия полярных молекул растворенного вещества между собой. [c.294]


    На фиг. 33 приведены результаты измерения зависимости диэлектрической проницаемости е от частоты переменного электрического поля V. В области низких частот (менее 10 гц) все молекулы раствора совершают вращательные движения синхронно с изменениями поля (при этом диэлектрическая проницаемость раствора равна ei). Если растворенное вещество более полярно, чем растворитель, то ei>eo, где ео — диэлектрическая проницаемость чистого растворителя. [c.179]

    Растворы электролитов. В растворах электролитов происходит образование ионов, имеющих противоположные заряды. Особенно резко выражено диссоциирующее действие у таких растворителей, как вода, жидкий аммиак, синильная кислота, т. е. у растворителей с большой диэлектрической проницаемостью. Полярные молекулы этих растворителей, окружая ионы, экранируют их и делают мало вероятным рекомбинацию ионов, т. е. образование молекулы. Диэлектрическая проницаемость входит в знаменатель дроби, выражающей зависимость силы взаимодействия зарядов в и ег от их величины до взаимного расстояния г (закон Кулона)  [c.177]

    Твердые вещества, при растворении которых в воде и других полярных растворителях, образуются электролиты, являются, как правило, кристаллическими телами, имеющими ионные или близкие к ионным решетки. В чисто ионных решетках не существует молекул вещества, и кристалл любой величины можно рассматривать как одну огромную молекулу. Ионы противоположных знаков, составляющие такую решетку, связаны между собой большими электростатическими силами. При переходе ионов Е раствор, энергии электростатического взаимодействия ионов в решетке противопоставляется энергия взаимодействия ионов с дипольными молекулами растворителя, который втягивает ионы решетки в раствор. При этом ионы окружаются молекулами растворителя, образующими вокруг иона сольватную (в частном случае — гидратную) оболочку. Энергия взаимодействия ионов различных знаков, перешедших в раствор и окруженных сольватными оболочками, уменьшается по сравнению с энергией их взаимодействия в решетке (при равных расстояниях г между ионами) обратно пропорционально диэлектрической проницаемости растворителя О в соответствии с законом Кулона  [c.391]

    Наличие элементов кристаллической структуры наряду с большим дипольным моментом молекулы Н2О обусловливает очень большое значение относительной диэлектрической проницаемости воды е при 25 °С она равна 79,5." Таким образом, взаимодействие между заряженными частицами в водной среде приблизительно в 80 раз слабее, чем в вакууме. Благодаря этому все ионные соединения в водных растворах диссоциируют. В отличие от растворителей с меньшим значением е диссоциация в водной среде является практически полной. В водном растворе диссоциируют на ионы также многие соединения с полярной связью в молекулах, такие, как галогеноводороды, НгЗ и др., хотя для подобных соединений степень диссоциации может не равняться 100%. [c.156]


    Определение дипольного момента проводили, измеряя диэлектрическую проницаемость разбавленных растворов веществ методом разбавленных растворов Дебая [126]. Этот метод основан на допущении, что в предельно разбавленных растворах молекулы полярного вещества должны свободно ориентироваться. Диполь-ный момент рассчитывали по формуле [c.35]

    Технические неполярные жидкости представляют собой растворы полярных молекул и ионов в неполярной среде. Концентрация полярных молекул может меняться в зависимо сти от химической природы и степени очистки жидкости. Указанные технические жидкости можно считать разбавленными растворами полярных молекул, наличие которых в техническом масле МВП, бензине Б-70 установлено в связи с уменьшением диэлектрической проницаемости жидкостей после обработки силикагелем. Уменьшение содержания дипольных молекул, например в жидкостях, прошедших очистку, не было обнаружено, вероятно, из-за недостаточной [c.26]

    Однако содержание ионов в растворителях с малой диэлектрической проницаемостью очень мало по сравнению с содержанием полярных молекул из-за незначительной степени диссоциации растворов электролитов (10 —10 моль/л). Средние межионные расстояния при этом очень велики, и растворы в отношении ионов жидкости являются весьма разбавленными. Даже относительно сильное кулоновское поле, связанное с малым значением е среды, не вызывает существенных межионных взаимодействий. [c.27]

    В области более высоких температур, где ассоциация молекул затруднена или вообще становится невозможной, исчезает и аномалия в характере температурной зависимости диэлектрической проницаемости. В области высоких температур значения диэлектрической проницаемости бензольных растворов смол и асфальтенов снижаются с повышением температуры, т. е. находятся в полном согласии с характером температурной зависимости ее в полярных неассоциированных растворах. [c.80]

    При растворении слабых электролитов даже в полярных растворителях, имеющих высокую диэлектрическую проницаемость, часть молекул не диссоциирует. Степень диссоциации слабых электролитов, представляющая собой отношение числа распавшихся на ионы молекул к общему числу растворенных молекул, зависит от концентрации. В концентрированных растворах а С 1 при с->0 а 1. [c.184]

    Другим примером систем, в которых сольватация, по-видимо-му, оказывает существенное влияние на устойчивость, могут служить дисперсные системы с неполярной углеводородной средой, играющие важную роль при производстве и применении нефтепродуктов. Такие системы, например, растворы поверхностно-активных веществ и высокодисперсные взвеси в углеводородах подробно изучены Г. И. Фуксом и его сотр. Оказалось, что устойчивость этих систем зависит от структуры молекул углеводорода и ее соответствия структуре молекул частиц дисперсной фазы, а. также от диэлектрической проницаемости среды и от наличия следов веществ с полярными и дифильными молекулами. Впрочем, для этих систем, как показал Овербек, нельзя пренебрегать двойным электрическим слоем и электростатическими взаимодействиями.,  [c.282]

    Высокочастотное титрование — вариант бесконтактного кондуктометрического метода анализа, в котором анализируемый раствор подвергают действию электрического поля высокой частоты (порядка нескольких мегагерц). При повышении частоты внешнего электрического поля электропроводность растворов электролитов увеличивается (эффект Дебая — Фалькенгагена), поскольку уменьшается амплитуда колебания ионов в поле переменного тока, период колебания ионов становится соизмерим с временем релаксации ионной атмосферы (примерно 10 с для разбавленных растворов), тормозящий релаксационный эффект снимается. Поле высокой частоты деформирует молекулу, поляризуя ее (деформационная поляризация) и заставляет полярную молекулу определенным образом перемещаться (ориентационная поляризация). В результате таких поляризационных эффектов возникают кратковременные токи, изменяющие электропроводность, диэлектрические свойства и магнитную проницаемость растворов. Измеряемая в этих условиях полная электропроводность высокочастотной кондуктометрической ячейки X складывается из активной составляющей А/акт — ИСТИННОЙ ПрО-водимости раствора — и реактивной составляющей реакт — МНИ-мой электропроводности, зависящей от частоты и типа ячейки  [c.111]

    В реакциях полярных частиц в полярных средах проявляются электростатические взаимодействия на константу скорости реакции влияют диэлектрическая проницаемость растворителя и ионная сила раствора. Однако далеко не во всех случаях эксперимент согласуется с электростатической моделью, рассматривающей растворитель как континуум. Вызвано это тем, что растворитель дискретен, состоит из молекул, и поэтому его примитивная электростатическая модель не [c.134]


    Формулой (IV.127) пользуются для определения дипольных моментов молекул на основании измерения статической диэлектрической проницаемости газов и разбавленных растворов полярных веществ в неполярных. Однако к полярным жидкостям формула (IV. 127) неприменима, так как локальное поле в этом случае не передается выражением (IV. 120). [c.214]

    Изучение закономерностей изменения диэлектрической проницаемости бензольных растворов смол и асфальтенов в зависимости от температуры и концентрации растворов позволило использовать этот метод для обнаружения явлений ассоциации. Известно, что диэлектрическая проницаемость растворов неассо-циированпых полярных соединений снижается с повышением температуры, между тем как в концентрированных растворах смол и асфальтенов в бензоле в области температур от 10 до 25—30° С, наоборот, наблюдается повышение значений диэлектрической проницаемости с ростом температуры. Такой характер температурной зависимости диэлектрической проницаемости в концентрированных бензольных растворах смол и асфальтенов можно объяснить лишь явлениями ассоциации молекул смол и асфальтенов. [c.80]

    Согласно эмпирическому правилу повышение температуры на 10 °С приводит к росту скорости реакции в 2-4 раза. В качестве характеристики подобной зависимости используют температурный коэффициент скорости реакции уг, который представляет отнощение констант скоростей химических реакщш при температуре Т и Г+ 10 у7-= кт+ й к-г. Однако температурный коэффициент сам является функцией температуры, т. к. скорость взаимодействия полярных молекул (ионов) во многом определяется степенью их сольватации, диэлектрической проницаемостью раствора, т. е. параметрами, зависящими от температуры, что уменьшает возможности его практического применения. [c.333]

    В ряде случаев, согласно [1], статическая диэлектрическая проницаемость раствора со слабо выраженным ориентационным порядком дипольных молекул должна с достаточной степенью точности аддитивно слагаться из величин диэлектрических проницаемостей чистых компонентов. Подобная закономерность не соблюдается в растворах полярных веществ в неполярных растворителях. Как правило, в таких растворах имеют место отрицательные отклонения эффективных значений диэлектрической проницаемости е от аддитивности. Полученная в [2] связь между величиной отклонения и средним квадратом флюктуаций (Дг) в первом кфиближе-нии выражается уравнением [c.37]

    Локальная диэлектрическая проницаемость каждого йз элементов объема колеблется вокруг некоторого среднего значения вл, одинакового для всех элементов объема раствора. Среднее значение локальной днэлектрической проницаемости бл — это диэлектрическая проницаемость раствора в состоянии равновесия при допущении, что в нем флуктуации отсутствуют, т. е. свойства раствора во всем объеме совпадают с их средними локальными значениями. Именно эти предположения и вводятся в теории статической диэлектрической проницаемости е,, Онзагера и теории деформационной диэлектрической проницаемости е =, приводящей к уравнению Клаузиуса—Мосотти. Поэтому уравнения Онзагера и Клаузиуса—Мосотти фактически дают возможность вычислить среднюю локальную диэлектрическую проницаемость жидкостей в статических и соответственно (если речь идет о полярных жидкостях) в высокочастотных полях, за областью поглощения, обусловленного ориентационной поляризацией молекул. [c.147]

    Если вещества, составляющие фазы системы, не способны обмениваться зарядами, то двойной электрический слой может образоваться благодаря ориентированию полярных молекул сопряженных фаз в результате их взаимодействия. В этом состоит третий механизм образования двойного электрического слоя. По такому же механизму образуется двойной электрический слой в результате адсорбции недиссоциирующих полярных молекул, находящихся в растворе. Двойной электрический слой могут образовать и неполярные молекулы и атомы, но которые могут поляризоваться ориентированно в силовом поле поверхности раздела. Если в формировании двойного электрического слоя не принимают участия электролиты, для определения знака заряда на поверхности можно воспользоваться правилом Кёна. Согласно этому правилу из двух соприкасающихся фаз положительно заряжается та, которая имеет большую диэлектрическую проницаемость. Именно поэтому многие вещества, находящиеся в контакте с водой, имеющей большую диэлектрическую проницаемость, заряжаются отрицательно. [c.59]

    В течение многих лет смешанные ратворители использовали как средство изменения диэлектрической проницаемости растворов электролитов. При этом, однако, возникали большие сложности, особенно если одним из компонентов являлась вода [228]. Присутствие менее полярного компонента растворителя влияет на структуру воды и может вызвать преимущественную сольватацию. Кроме того, высаливание или всаливание ионами компонентов неводного растворителя может вызвать неоднородное распределение молекул растворителя вокруг иона. Поэтому смешанные растворители можно рассматривать как однородные жидкости, характеризуемые собственными диэлектрическими проницаемостями, лишь в случае очень разбавленных растворов и по отношению к свойствам, которые малочувствительны к структурным эффектам. [c.81]

    Полярность связей С — О и О — Н и наличие несвя-зываюших пар электронов на атомах кислорода обусловливает в молекулах органических пероксидных соединений существование постоянных диполей. Измерение величины дипольного момента позволяет уточнить пространственное строение и распределение зарядов в молекуле [1]. В ряде систем определение диэлектрической проницаемости растворов используют для определения состава с месей. При этсм можно использовать внешние электроды, наложенные на наружные стенки сосуда с пробой, что важно для таких высокореакционных соединений, как пероксиды, и поэтому диэлькометрия может найти широкое применение для контроля за составом растворов, содержащих пероксидные соединения, на технологических установках, [c.185]

    В последнее время применение водно-органических растворителей для разделения ионов хроматографическим методом получает широкое распространение. Это объясняется тем, что введение органического раствори-теля расширяет возможности разделения химически сходных ионов [1, 2]. Наличие в растворе органического растворителя вызывает значительные изменения в состоянии и поведении как растворенного соединения, так и ионита. Вызванное органическим растворителем изменение диэлектрической проницаемости раствора является причиной изменения активной концентрации ионов, что сказывается на кинетике сорбции. Из водноорганического раствора в большей степени, чем из водного, происходит сорбция нейтральных молекул, которая, накладываясь на ионный обмен, увеличивает количество сорбированных ионитом атомов растворенного вещества. Большое значение дпя ионного обмена имеет степень набухания ионита, которая в смешанном растворителе меньше, чем в воде. Меньшая набухаемость — причина меньших размеров пор ионита она затрудняет диффузию растворенного вещества внутрь зерен ионита. Различен также состав жидкой фазы в порах ионита и межзерновом пространстве в порах ионита жидкая фаза богаче более полярным растворителем [3— 10]. Эти обстоятельства и другие, не указанные здесь, сложным образом влияют на ионный обмен. Частичная замена воды органическими раство-штелями в большинстве слутзаев замедляет скорость ионного обмена [c.80]

    Полярные молекулы образуют в растворе двойные молекулы или димеры, особенно когда растворителем является вещество с малой диэлектрической проницаемостью, а само растворенное вещество содерн5ит группы — ОН или > N11. Относительно слабая связь имеет место между молекулами арилгалоге-нов в четыреххлористом углероде. Нахедено, что изменение теплосодержания при распаде двойной молекулы (ВХ)о 2КХ лелшт между 1000 и 1700 ка.л [c.375]

    В этом случае взаимодействия внутри растворителя становятся величиной порядка ван-дер-ваальсовых сил, и, по всей вероятности, нельзя пренебрегать последними при рассмотрении взаимодействий диполь — растворитель и приписывать все изменение скорости диэлектрической проницаемости. Уравнение (XV.И.2) может применяться также для реакций между полярными молекулами в растворе [64]. Однако до сих пор не ясно, смогут ли эти уравнения быть использованы для изучения строения активированного комплекса или для дальнейшего развития теории растворов. (Автору кажется, что более детальная молекулярная модель раствора, учитывающая только взаимодействия между ближайшими соседними частицами, не так уж сложна, и она дала бы, вероятно, более интересные и полезные сведения. Параметрами в таком случае служили бы только дипольные моменты и радиусы молекул растворителя и растворенных частиц.) [c.458]

    Разрыв ковалентной связи в молекулах газа обычно приводит к образованию двух нейтральных радикалов. Такие реакции называются атомными или гомолитическими. Разрыв ковалентной связи в молекуле может привести и к образованию двух противоположно заряженных ионов. Такие процессы называются гетвролитическими и почти не наблюдаются в газах, но очень характерны для растворов. Объясняется это тем, что гетеро-литический распад в газах требует затраты большой энергии на преодоление взаимного электростатического притяжения ионов. В растворах же большие диэлектрические проницаемости многих растворителей заметно понижают электростатическое притяжение ионов, поэтому энергия гетеролитического разрыва ковалентной связи может стать ниже энергии гомоли-тического разрыва. Кроме того, гетеролитическому распаду способствует поляризация диссоциирующей связи под действием электрических полей полярных молекул растворителя. [c.84]

    Обычные неорганические соли натрия и калия не растворимы в неполярных органических растворителях. Это верно и для солей неорганических анионов с небольщими органическими катионами, например для тетраметиламмония. Подобные аммонийные соли часто способны, однако, растворяться в ди-хлорметане и хлороформе. Более того, использование относительно больщих органических анионов может обеспечивать растворимость солей щелочных металлов в таких растворителях, как бензол. Например, диэтил-н-бутилмалонат натрия дает 0,14 М раствор в бензоле, для которого понижение точки замерзания неизмеримо мало, что говорит о высокой степени ассоциации. Подобным образом большие ониевые катионы (например, тетра-м-гексиламмония) делают растворимыми соли даже небольших органофобных анионов (например, гидроксид-ионов) в углеводородах. Ионофоры, т. е. молекулы, состоящие из ионов в кристаллической решетке, диссоциируют (полностью или частично) на сольватированные катионы и анионы в растворителях с высокими диэлектрическими проницаемостями. Подобные растворы в воде являются хорошими проводниками. В менее полярных растворителях даже сильные электролиты могут растворяться с образованием растворов с низкой электропроводностью это означает, что только часть растворенной соли диссоциирована на свободные ионы. Чтобы объяснить такое поведение растворов, Бьеррум выдвинул в 1926 г. гипотезу ионных пар. Впоследствии его гипотеза была усовершенствована Фуоссом [38] и рядом других исследователей. Ионные пары представляют собой ассоциаты противоположно заряженных ионов и являются нейтральными частицами. Стабильность ионных пар обеспечивается в основном кулоновскими силами, но иногда этому способствует и сильное взаимодействие с ок- [c.16]

    Наиболее достоверные данные о дипольных моментах можно получить, если проводить исследование вещества в газообразной фазе при очень низких давлениях, когда расстояния между молекулами настолько значительны, что электростатическое взаимодействие между ними почти отсутствует. Из всех известных методов наиболее широкое распространение получили методы определения дипольных моментов, основанные на измерении диэлектрической проницаемости паров и разбавленных растворов полярных веществ в бездипольных растворителях. Большинство экспериментальных значений дипольных моментов получены при помощи этих методов, в основе которых лежит статистическая теория полярных молекул, разработанная Дебаем. [c.54]

    Первой стадией процесса растворения вещества, состоящего из полярных молекул, является поляризация ковалентной связи растворителем, что, вообще говоря, приводит к гетеролити-ческому расщеплению на положительную и отрицательную частицы. Многочисленными примерами можно доказать, что способность растворителя расщеплять вещество на ионы в первую очередь определяется его донорным и акцепторным числами, а не диэлектрической проницаемостью ел Даже растворитель с большой диэлектрической проницаемостью не способен гете-ролитически расщепить связи растворенной частицы, если он не имеет достаточной координирующей способности. Так, например, хлорная кислота в серной кислоте (ег = 80) не образует ионов, в то время как в водном растворе (ег=78,5) О—Н-связь в молекуле НСЮ4 полностью разрывается. [c.450]

    Существует точка зрения, что электропроводность растворов электролитов в полярных растворителях определяется электромагнитными свойствами растворителя, в частности отношением его диэлектрической проницаемости к времени дипольной релаксации (последняя величина характеризует подвижность дииоль-ных молекул в растворе). Это отношение является фундаментальной характеристикой растворителя и называется предельной высокочастотной электропроводностью. Установлено, что в водно-органических растворах величина х. уменьшается при увеличении концентрации неэлектролита подобно тому, как уменьшается при увеличении концентрации неэлектролита удельная электропроводность раствора электролита. [c.84]

    С современной точки зрения заряд на коллоидных частицах лиозолей, проявляющийся при электрофорезе, обусловлен наличием на их поверхности двойного электрического слоя из ионов, возникающего либо в результате избирательной адсорбции одного из ионов электролита, находящегося в растворе, либо за счет ионизации поверхностных молекул веществ. Правильность такой точки зрения подтверждают опыты, показавшие, что эле строкине-тические явления не наблюдаются или почти не наблюдаются в жидких средах с очень малой диэлектрической проницаемостью, в которых не происходит заметной диссоциации электролитов. К таким жидкостям относятся хлороформ, петролейный эфир, сероуглерод. В то же время электрокинетические явления наблюдаются в нитробензоле в таких слабо полярных жидкостях, как ацетон, этиловый и метиловый спирты, и в особенности — в воде. [c.171]

    Таким образом, энергия реактивного взаимодействия полярных молекул с окружающей средой в основном определяется величиной дипольного момента т и статической диэлектрической проницаемостью ев. Для полярных раствО рителей эта энергия Ен может быть значительно больше энергии ориентационного и дисперсионного взаимодействий. Однако для растворов углеводородов в полярных растворителях величина Ен мала, так как дипольный момент углеводородов т О. [c.11]

    Если в нижнюю зону и-образной трубки поместить пористое тело или пучок большого числа стеклянных капилляров (рис. 100), заполнить оба колена и-образной трубки сильно разбавленным водным раствором электролита и пропускать постоянный ток, то жидкость будет перемещаться из одного колена в другое, т. е. будет осуществляться явление электроосмоса. Если пористая масса — стекло, то вода будет перемещаться к катоду. Объясняется это тем, что поверхность стекла адсорбирует гидроксид-ионы. В водном растворе остаются свободные ионы гидроксония, которые движутся по направлению к катоду, увлекая за собой полярные молекулы воды. Согласно правилу Коэна в большинстве случаев при контакте двух тел с различными диэлектрическими проницаемостями тело с большей величиной диэлектрической проницаемости заряжается положительно, тело с низшей — отрицательно. Это правило обычно соблюдается для чистых жидкостей присутствие посторонних электролитов может существенно изменить картину. На Ееличине заряда сказывается и специфика контактирующих тел. Так, при контакте воды с алундом (А1оОз), имеющим основной характер, алунд заря-лсается положительно, адсорбируя ионы НаОЧ а вода — отрицательно. [c.408]

    На свойствах растворов наиболее отражается такая характеристика растворителей, как их диэлектрическая проницаемость е (см. гл. IV, 6). Высокой диэлектрической проницаемостью обладают полярные вещества, например вода, жидкий аммиак, диметилформамид ( H3)2N H0 и др. В среде этих растворителей электростатическое притяжение противоположно заряженных частиц ослабевает. Поэтому в таких растворителях вещества, состоящие из ионов или полярных молекул, распадаются на ионы (см. гл. VIII, 1). [c.145]


Смотреть страницы где упоминается термин Полярность молекул. Диэлектрическая проницаемость растворов: [c.96]    [c.46]    [c.67]    [c.285]    [c.285]    [c.241]    [c.11]    [c.395]    [c.15]    [c.171]    [c.554]    [c.561]   
Смотреть главы в:

Физическая и коллоидная химия -> Полярность молекул. Диэлектрическая проницаемость растворов




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая проницаемость

Полярность и диэлектрическая проницаемост

Полярность молекул

Полярные молекулы



© 2024 chem21.info Реклама на сайте