Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магнитные и электрические свойства полимеров

    Но дело не только в том, чтобы добиться высокой прочности. Важно также выявить зависимость между химическим строением и всем остальным комплексом -физических, химических, физиологических, магнитных, электрических свойств полимера. Это задача полимерной химии. И не удивительно, что к ней сейчас приковано внимание исследователей всех стран. [c.176]

    IV. Релаксационный спектр с несколькими стрелками де Ь твия й с учетом температурной зависимости собственных частот или времен жизни релаксаторов позволяет сразу ввести в рассмотрение принцип температурно-временной эквивалентности, который, в свою очередь, наиболее наглядно иллюстрирует природу релаксационных состояний полимеров. Понимание реальности трех физических (релаксационных) состояний, которые не являются ни фазовыми, ни агрегатными, дает ключ к пониманию практически всех механических, электрических и магнитных свойств полимеров, а значит, и к управлению ими. (Напомним, что стрелка действия была введена без конкретизации природы силового поля, в которое помещена система). В действительности можно говорить вообще обо всех физических свойствах, включая и те, которые связаны с фазовыми равновесиями и переходами [15, с. 176—270 22]. [c.73]


    Наша книга не претендует на охват всех разделов физики н механики полимеров. В трех ее частях представлены наиболее важные сведения о строении и свойствах полимеров. В первой рассмотрены строение, физические состояния, кристаллизация и стеклование как основные фазовые и релаксационные переходы, статистическая и молекулярная физика макромолекул и полимерных сеток, а также некоторые вопросы термодинамики механических свойств полимеров. Во второй рассмотрены механические, электрические, магнитные и оптические свойства, относящиеся к релаксационным явлениям в полимерах. В третьей представлены важнейшие тепловые и механические свойства, связанные с прочностью и разрушением, а также с трением и износом полимеров. [c.8]

    Ядерные излучения используют для получения новых веществ, для улучшения свойств полимеров и т. д. Большой интерес представляет изменение свойств различных материалов под влиянием этих облучений. Например, оказалось, что из предварительно облученного угля легче извлекается частый его спутник германий каучуки вулканизуются без добавок серы полиэтилен становится более устойчивым к нагреванию и органического стекла (см. гл. ХП1) нагреванием и облучением можно получить пенопласт и т. д. Ядерные излучения возбуждают множество цепных реакций. В полупроводниковых кристаллах они увеличивают число различных дефектов, что резко изменяет их свойства, особенно электрофизические. В связи с этим упомянем о чувствительности к излучениям, радиодеталей, применяемых в управляющих и регистрирующих приборах атомных реакторов. Радиолампы меняют параметры незначительно. Полупроводниковые приборы теряют свои свойства уже при малой дозе облучения. Масляные конденсаторы вспучиваются при облучении вследствие разложения масла. Керамические и слюдяные конденсаторы меняют свойства только после длительного облучения. У металлических сопротивлений электрические свойства практически не меняются, а у угольных сопротивление уменьшается. Магнитные свойства силиконового железа, пермаллоя (см. гл. ХИ, 7) и др. ухудшаются. Как видно, электронные приборы можно использовать в полях излучений (в частности и космических) при условии не слишком больших доз облучения и очень осмотрительно. [c.47]

    Электрические н магнитные свойства полимеров с сопряженными [c.310]

    Для реальных систем именно такая ситуация типична, и сложный релаксационный процесс представляют как суперпозицию независимых идеальных релаксационных процессов со своими временами релаксации, вводя функцию распределения времен релаксации (релаксационный спектр). В третьей части мы рассмотрим различные экспериментальные методы исследования релаксационных свойств полимеров и покажем, что наиболее эффективны методы, основанные на воздействии на полимер периодическими механическими силами и электрическим и магнитным полями с определенной частотой. Пока же остановимся на вопросе об особенностях перестройки структуры в полимерах, определяющих специфику их релаксационных свойств. [c.29]


    Реакции взаимодействия полимеров и их модельных соединений с молекулярным кислородом представляют обширную область исследований. Можно считать, что основные закономерности процессов окисления полимеров с насыщенными цепями и изолированными двойными связями в настоящее время выяснены. Иное положение наблюдается в отношении полимеров с системой сопряженных двойных связей, интерес к которым возрос благодаря проявлению ими повышенной термостойкости и специфических магнитных, электрических и других свойств. [c.395]

    В последние годы благодаря успехам органического синтеза удалось получить много различных по химическому составу полимеров с системой сопряженных кратных связей. Представители этого нового класса веществ обладают особыми свойствами, отличающими их от большинства органических соединений. По своим электрическим и магнитным свойствам эти полимеры, так же как и некоторые природные соединения (конденсированные ароматические системы, гли), близки к неорганическим полупроводниками парамагнетикам. В связи с этим, прежде чем перейти к рассмотрению особенностей свойств полимеров с сопряженными связями, необходимо кратко изложить некоторые общие положения об электрических и магнитных свойствах твердого тела [c.274]

    Прежде чем перейти к рассмотрению электрических и магнитных свойств полимеров с сопряженными связями, целесообразно проследить изменение этих свойств в низкомолекулярных соединениях с большим числом сопряженных связей. Удобнее всего проделать это на примере многоядерных конденсированных соединений, структура и свойства которых достаточно хорошо известны. [c.282]

    В книге подробно описаны термодинамические, механические, оптические, электрические и магнитные свойства полимеров, их растворов и расплавов изложены методы прогнозирования наиболее важных в технологическом отношении показателей свойств полимерных материалов. [c.4]

    Работы последних десяти лет в области влияния структуры на эксплуатационные свойства полимеров показали, что в процессе переработки полимеров даже чисто физическое или физико-химическое воздействие на полимерные материалы позволяет существенно изменять их свойства. Этот путь модификации полимеров открывает широкие перспективы разработки научно обоснованной технологии получения и переработки полимерных материалов. В основе этой технологии лежит формирование соответствующих надмолекулярных образований в результате воздействия тепловых, магнитных, электрических и механических полей. Так, воздействием теплового поля и давления (поле механических сил) из одного и того же химически идентифицированного полипропилена удалось получить разные материалы, отличающиеся структурой на надмолекулярном уровне и механическими свойствами [15, 16]. Воздействием магнитного поля на полиэтилен или эпоксидную смолу, наполненные ча-. стицами никеля, удается повысить их прочность в два раза и одновременно сделать эти пластмассы электропроводящими (р ) изменяется от 10 до 10 Ом-см у полипропилена [15] и от 10 до 10 Ом-см у эпоксидной смолы [16]). [c.14]

    Особенности строения макромолекул и многообразие форм молекулярной подвижности в полимерах приводит к набору релаксационных процессов, каждый из которых связан с тепловым движением кинетических единиц определенного вида и может быть описан спектром времен релаксации. Времена релаксации, связанные с подвижностью крупных отрезков макромолекулы, например сегментов, а тем более с подвижностью элементов надмолекулярной структуры, могут быть довольно большими. Соответствующие им релаксационные процессы протекают медленно. Мелкомасштабные движения макромолекул обеспечивают более быстрые релаксационные процессы. В связи с широкой шкалой времен релаксации большая часть физических свойств полимеров имеет релаксационную природу. Так, релаксационный характер носят все механические свойства, а также электрические (диэлектрическая проницаемость, электропроводность), магнитные (магнитная восприимчивость и проницаемость). [c.4]

    Дулов, Слинкин и Рубинштейн [51] исследовали электрические и магнитные свойства полимеров ферроцена, полученных реакцией Фриделя — Крафтса и полирекомбинацией, предварительно прогретых в вакууме до 200 и 270° С. Отмечено возрастание сопротивления всех образцов после прогревания в вакууме до 200° С. [c.221]

    В общем случае под релаксационными явлениями в полимерах понимают изменение их свойств во времени, обусловленное достижением равновесного состояния. В принципе релаксационные явления должны иметь место при любых процессах, протекающих в полимерных системах, связанных с подвижностью макромолекул или ее фрагментов. Известны электрические, магнитные, механические релаксационные явления, явления, наблюдаемые при плавлении, кристаллизации, стекловании, растворении, набухании полимеров. При изучении свойств полимеров в широком интервале температур проявляются так называемые релаксационные переходы, связанные с возникновением или исчезновением подвижности тех или иных фрагментов макромолекул или макромолекулы в целом. [c.89]


    Физика полимеров в той части, которая рассматривает полимеры как конструкционные материалы, является сравнительно новым разделом физики твердого тела [15]. Физику твердого тела, и физику полимеров в частности, интересует связь между строением и свойствами веществ. Любые твердые тела, в том числе и полимеры, представляют собой сложные системы, в которых можно выделить ряд важнейших подсистем (решетка, молекулы, атомные ядра, система электронов, система спинов, фононы и др.). Хотя указанные подсистемы связаны между собой, воздействия на твердые тела различных силовых полей (механических, электрических и магнитных) вызывают раздельное проявление их особенностей. Этим определяется эффективность изучения взаимосвязи строения и физических свойств различных твердых тел методами электронного парамагнитного и ядерного магнитного резонанса, а также диэлектрическими и акустическими методами. [c.6]

    Физика и механика полимеров широко использует идеи и методы физики твердого тела, физики жидкого состояния, термодинамики и статистической физики. Так, например, и физику твердого тела, и физику полимеров интересует связь между физическими свойствами и строением веществ. Любые твердые тела, в том числе и полимеры, представляют собой сложные системы, из которых можно выделить ряд важнейших подсистем (решетка, атомы с соответствующими электрическими квадрупольными и магнитными моментами ядер, электроны и ядра с соответствующими спинами, фононы, атомные группы, сегменты, макромолекулы и др.). Хотя указанные подсистемы связаны между собой, различные силовые поля (механические, электрические и магнитные) воздействуют на них не одинаково. Этим определяется эффективность изучения взаимосвязи строения и физических свойств различных твердых тел методами электронного парамагнитного и ядерного магнитного резонансов (ЭПР и ЯМР), диэлектрическими и ультразвуковыми методами. [c.9]

    Следует отметить, что метод ЭПР дает возможность изучения кинетики радикальной полимеризации и радикалов, образовавшихся в результате тех или иных воздействий. ЭПР является основным средством изучения полимеров, обладающих полупроводниковыми и магнитными свойствами. ЯКР имеет ограниченную применимость для полимеров, так как в них редко встречаются ядра, обладающие электрическим квадрупольным моментом. Однако введение в полимеры кристаллических порошков, содержащих такие ядра, дает возможность оценивать их внутренние напряжения. [c.230]

    АНИЗОТРОПИЯ — явление, состоящее в том, что физические свойства тел (механические, оптические, электрические, магнитные и др.) в отличие от изотропии, в зависимости от направления, различны. А. обусловлена строением тела, наличием кристаллической структуры или асимметрией молекул. Практическое значение имеет А. кристаллов, жидких кристаллов, полимеров. [c.26]

    Со строением молекул, их движением и взаимодействием связаны механические, тепловые, электрические, магнитные и многие другие свойства вещества. Молекулы непрестанно волнуют воображения ученых, являются объектом исследования в физике, химии, молекулярной биологии, физике полимеров, медицине. Определяются состав молекул, их размер и форма, длины связей и валентные углы, поляризуемость и дипольные моменты, частоты и амплитуды колебаний атомов и другие величины. В зависимости от состава и своего строения молекулы характеризуются различной степенью устойчивости к нагреванию, потоку радиации и другим физическим воздействиям. Строение же молекул, т. е. расположение атомов в них, предопределяется электронной конфигурацией атомов и характером химических связей между ними. [c.114]

    В физике твердого тела для различных классов кристаллов наблюдаются сверхсостояния (сверхпроводимость, ферромагнетизм и сверхпластичность для металлов, сегнетоэлектрическое состояние для диэлектриков), для квантовой жидкости (гелия) наблюдается сверхтекучесть. Полимеры обладают своим сверхсостоянием, которое называется высокоэластнческим состоянием. Высокоэластическое состояние объясняется не только структурой полимерных молекул или макромолекул, но и свойством внутреннего вращения, известным для простых молекул в молекулярной физике. Теория высокой эластичности основывается на применении конформ анионной статистики макромолекул, которая является развитием статистической физики в физике полимеров. Аморфные полимеры по структуре сложнее, чем низкомолекулярные вещества, но в их ближнем порядке примыкают к строению жидкостей. Релаксационные и тепловые свойства расплавов полимеров и жидкостей во многом аналогичны (процесс стеклования, реология). Кристаллические полимеры по своему строению похожи на твердые тела, но сложнее в том отношении, что наряду с кристаллической фазой имеют в объеме и аморфную фазу с межфазными слоями. По электрическим свойствам полимеры — диэлектрики и для них характерно электретное состояние, по магнитным свойствам полимеры — диамагнетики, а по оптическим свойствам они характеризуются ярко выраженным двойным лучепреломлением при молекулярной ориентации. При этом все полимеры обладают уникальными механиче- [c.9]

    С двойным лучепреломлением полимеров связано возникновение явления фотоупругости (в механическом поле), эффекта Керра (в электрическом поле) и эффекта Коттона—Мутона (в магнитном поле). Фотоупругость полимеров зависит от их фазового и физического состояния. Метод фотоупругости используется для изучения характера распределения внутренних напряжений в полимерах без их разрушения [9.4]. Изучая эффект Керра в полимерах, можно оценить эффективную жесткость полярных макромолекул, мерой которой служит корреляция ориентаций электрических диполей вдоль цепей [9.5]. Наблюдение эффекта Коттона — Мутона (проявление дихроизма в магнитном поле), обусловленного диамагнитной восприимчивостью и анизотропией тензора оптической поляризуемости, позволяет оценивать значения коэффициентов вращательного трения макромолекул полимеров. Все эти методы исследования оптических свойств полимеров получили широкое распространение и, так же как и спектроскопические методы, в достаточной мрпл описаны в литературе [9.6 50]. [c.234]

    Ситуация наиболее благоприятна для получения устойчивой к коагуляции смеси, когда дисперсность и заряд одного из компонентов сушественно больше, чем другого. Иначе говоря, один из компонентов представлен крупными частицами, а другой — частицами малых размеров, и их концентрация такова, что суммарный заряд мелких частиц больше заряда грубодисперсного компонента. Такое соотношение может быть легко создано даже при малой илотности поверхностного заряда у мелких частиц. В этом случае мелкие частицы налипают на поверхность крупных сплошным слоем, создавая толстый защитный слой, препятствующий дальнейшему прилипанию мелких частиц и слипанию крупных. Таким образом, процесс коагуляции прекращается (эффект гетеростабилизации). Механизм гетеростабилизации многокомпонентных систем достаточно универсален и не обязательно связан с различием электрических свойств частиц. Стабилизация взвеси крупных частиц мелкими характерна для эмульсий (стабилизация эмульсий порошками), смесей магнитных дисперсных материалов. Общеизвестно стабилизирующее действие мицел-оярных растворов ПАВ (защитных коллоидов), а также полимеров, которое тоже может быть интерпретировано описанным выше способом. [c.635]

    Комплекс механических характеристик пластмасс в настоящее время наиболее полно представлен в разделах, посвященных физическим и эксплуатационным свойствам Классификатора свойств полимерных материалов [4], разработанного Центром данных по свойствам полимериых материалов ОНПО Пластполимер в г. Ленинграде и Всесоюзным научно-иоследователь-ским центром Государственной службы стандартных и справочных данных о свойствах материалов и веществ (ГСССД). Этот классификатор предназначен для использования в автоматизированной информационно-ио-исковой системе. Кроме механических свойств классификатор содержит также данные по молекулярной и надмолекулярной структуре полимерных материалов, их теплофизическим, электрическим, магнитным и оптическим свойствам, характеристики физико-химических свойств, относящиеся к растворению и набуханию, проницаемости, сорбционной способности, адгезионным свойствам и специфическим электрохимическим свойствам ионообменных материалов. [c.303]

    Значительный интерес представляет использование металлополи-меров в качестве антикоррозионных и антифрикционных покрытий, а также покрытий с особыми электрическими и магнитными свойствами. В металлополимерных покрытиях защитные свойства полимеров дополняются протекторным или ингибирующим действием соответствующих металлов прочность, термостойкость и теплопроводность их выше, чем полимерных высокая электропроводность металлополимерных покрытий позволяет электроосаждением получать двухслойные покрытия, в которых второй слой полимерный или металлический. Путем подбора металлов и полимеров различной химической природы, изменением концентрации, размеров и формы коллоидных частиц металлов можно весьма тонко регулировать электрические и магнитные свойства металлополимерных покрытий. [c.116]

    Несмеяновым и Кочетковой [303] и другими [302] были получены по-лиалкилферроценилены. Эти полимеры обладают интересными магнитными и электрическими свойствами опи дают четкий сигнал парамагнитного резонанса и, следовательно, относятся к группе полупроводников [304.  [c.310]

    В главах IV, V и VI рассмотрены вопросы, связанные с гибкостью полимерных цепей, с фазовыми состояниями полимеров, особенностями упорядоченности макромолекул, а также изложены методы исследования структуры полимеров. В главах VIII, IX, XIX освещены термомеханичеокие и реологические свойства полимеров и их растворов, имеющие наибольшее значение для технологии переработки полимерных материалов. В главах XI и XII излагаются современные представления об электрических и магнитных свойствах полимеров. [c.11]

    Особенности электрических и магнитных свойств полимеров с сопряженными связями определяются двумя факторадш  [c.293]

    Так же как в низкомолекулярных сопряженных системах, с ростом цепи сопряжения (например, при переходе от бензола к пентацену) изменяется энергетическая характеристика вещества и соответственно его электрические и магнитные свойства и реакционная способность. Свойства полимеров с системой сопряжения зависят от молекулярного веса и вследствие этого полимергомологи могут зна-чи-рсльно различаться по свойствам. С возрастанием молекулярного веса полимеров изменяется длина сопряженной системы и ее энергетическая характеристика — значение энергии возбуждения. С измене- [c.486]

    В ближайшее время трудно ожидать появления принципиально новых многотоннажных полимерных пленок, но возможно расширение их сырьевой базы в результате производства сополимеров, а также полимеров, подвергнутых химической модификации. Изменения свойств пленочных материалов в заданном направлении можно достичь такими методами модификации, как введение структурных модификаторов, способных ориентироваться в магнитных, электрических или механических полях (к ним относятся, например, зароды-шеобразователи), или созданием многослойных пленок. [c.7]

    Следует отметить, что нодшмо рассмотренных механических релаксационных явлений в полимерах могут протекать электрические и магнитные релаксационные процессы, которые следует учитывать при переработке полимеров или эксплуатации изделий. На них основано также исследование свойств полимеров "физическими методами. [c.61]

    Сначала для этих полимеров [15] была предложена структура с четырехчлеппыми хелатными циклами 7, но впоследствии было [И, 22] отдано предпочтение пятич-тенной циклической структуре 8. В новых работах по изучению структуры рубеаната меди указывается, что это соединение обладает трехмерной структурой [16, 30]. Продукт, полученный при твердофазной реакции дитио-оксамида и бис(8-оксихинолината) меди(И), был фракционирован на несколько кристаллических фракций. Подробное изучение ИК-спектров, магнитных и электрических свойств этих фракций подтверждает структуры 11 и 12. Различие заключается в том, что в структуре И атомы меди расположены в разных направлениях, а в структуре 12 — в одной плоскости. На реакции меди с рубеановой кислотой основан один из способов фотокопирования [13]. [c.224]

    В настоящее время установлено, что свойства полимера могут изменяться под действием не только электрических, но и магнитных полей. Накоплен большой объем экспериментальных данных, свидетельствующих о влиянии магнитных полей на кинетику химических реакций, протекающих в полимерах, на структуру полимеров, их механические, электрические, оптические и другие свойства [14]. Изменение свойств полимера под действием магнитного поля обусловлено наличием анизотропии диамагнитной восприимчивости макромолекул, их фрагментов и ассоциатов [25]. Магнитное поле оказывает ориентирующее воздействие на сегментышакромолекул полимера, находящегося в вязкотекучем состоянии, а также на структурные элементы (домены), обладающие асимметричностью геометрических размеров [14]. Наличие в полимерном материале ферромагнитного наполнителя увеличивает зависимость его свойств от характеристик воздействующего на материал магнитного поля. В этом случае характер изменения свойств полимерного композита определяется дисперсностью и конфигурацией наполнителя, напряженностью магнитного поля и временем его действия [14]. [c.65]

    Интересно отметить, что полимер катализирует процесс окисления спиртов воздухом (СН3ОН — 250° С, С2Н5ОН — 170—250° С) и дегидрогенизацию этилового спирта (350—400° С). Каталитические процессы, идущие на этом полимере, изучаются нами далее. Таким образом, исследование описанных выше полимеров ясно показывает необычность их магнитных и электрических свойств, а также ставит ряд сложных принципиальных п методических вопросов в области изучения и применения нерастворимых, неплавких, непрессуемых и очень мелкодисперсных новых материалов. [c.302]


Смотреть страницы где упоминается термин Магнитные и электрические свойства полимеров: [c.144]    [c.11]    [c.11]    [c.312]    [c.441]    [c.50]    [c.59]    [c.8]    [c.242]   
Смотреть главы в:

Эластичные магнитные материалы -> Магнитные и электрические свойства полимеров




ПОИСК





Смотрите так же термины и статьи:

Электрические и магнитные

Электрические свойства



© 2025 chem21.info Реклама на сайте