Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тела составной формы

    ТЕЛА СОСТАВНОЙ ФОРМЫ [c.37]

Рис. 3.3. Представление тел составной формы в виде комбинации простых тел. Рис. 3.3. Представление тел составной формы в виде комбинации простых тел.

    Можно показать, что температурное поле тела составной формы может быть представлено в виде произведения температурных полей, полученных для составляющих одномерных тел. Следовательно, практические расчеты для тел составных форм проводятся путем перемножения результатов вычисления безразмерных избыточных температур для составляющих тел, причем размеры тела по осям координат и коэффициенты теплоотдачи могут быть различными. Возможно также различие и в коэффициентах теплопроводности тела по различным направлениям ку, К), т. е. в общем случае могут быть разными значения В1/ = а// ,/Я,,, но коэффициент температуропроводности а должен быть постоянным. [c.38]

    Элементы теории регулярного режима. Суш,ность рассматриваемого метода определения теплопроводности заключается в том, что при простом охлаждении однородного изотропного тела любой формы, а также составного тела , т. е. нри охлаждении в среде с постоянной температурой нри постоянном коэффициенте теплоотдачи а через некоторое время перестают действовать начальные условия, определяющие распределение температур в теле, и наступает регулярный режим охлаждения. [c.60]

    Водород — самый распространенный элемент Вселенной. Он составляет основную массу Солнца, звезд и других космических тел. В недрах звезд на определенной стадии их эволюции протекают разнообразные термоядерные реакции с участием водорода. Они и являются источником неисчислимого количества энергии, излучаемого звездами в космическое пространство. Распространенность водорода на Земле существенно иная. В свободном состоянии на Земле он встречается сравнительно редко — содержится в нефтяных и горючих газах, присут ствует в виде включений в некоторых минералах. Некоторое количество водорода появляется постоянно в атмосфере в результате разложения органических веществ микроорганизмами, но затем водород быстро перемещается в стратосферу вследствие его легкости. Основная масса водорода в земной коре находится в виде химических соединений с другими элементами большая часть его связана в форме воды, глин и углеводородов последние составляют основу нефти и входят составной частью в природные горючие газы. Кроме того, растительные и животные (организмы содержат сложные вещества, в состав которых обязательно входит водород. Общее содержание водорода составляет 0,88% массы земной коры, и по распространенности на Земле он занимает 9-е место. [c.293]


    Белки нельзя отнести к какому-либо одному классу органических соединений из-за нахождения в них разнообразных функциональных групп. Это более высокая форма развития органических соединений и наиболее важная составная часть организмов. Жизнь есть способ существования белковых тел ,— точно определил Ф. Энгельс. [c.422]

    Впервые Ф. Энгельс свел определение понятия белка к каталитическому процессу в своей книге Анти-Дюринг . Характеризуя жизнь как форму существования белковых тел, заключающуюся по существу в постоянном самообновлении химических составных частей этих тел, Энгельс считал, что жизненные явления проявляются прежде всего в том, что белковое тело извлекает из окружающей среды другие подходящие вещества, ассимилирует их, одновременно разрушая ранее образованные структурные элементы. Таким образом, жизнь —обмен веществ, происходящий путем питания и выделения, есть протекающий сам по себе процесс, присущий прирожденному своему носителю — белку, без которого и не может быть жизни. [c.439]

    Графический метод решения уравнения теплопроводности, называемый иногда методом Шмидта [12], не требует сложных вычислений и позволяет получить практические решения нестационарных задач с различными граничными условиями. Однако он применим лишь для тел простейших геометрических форм или простых составных тел, таких как ряд параллельных плоских стенок. [c.24]

    Вода — главная составная часть клеточного тела плесневых грибов. Питательные вещества поступают в клетку в растворенном виде, а поэтому для нормального развития грибов окружающая среда должна содержать большой процент воды. Если содержание воды в ней падает, то все биохимические реакции приостанавливаются и плесневые грибы (их вегетативные формы) отмирают или переживают неблагоприятные условия в форме конидий, хламидоспор или зигоспор, чтобы снова начать процессы обмена веществ при наличии соответствующей влажности. [c.14]

    Железо — обязательный элемент всех растительных и животных организмов. Оно играет большую роль в окислительно-восстановительных процессах, протекающих в растительных и животных организмах, что связано с его способностью переходить из окисной формы в закисную и обратно. Железо — составная часть гемоглобина крови. Входит в состав многих ферментов. Количество железа в почве от 1 до 5%, считая на элемент. Особенно богаты железом почвы Западной Грузии (красноземы) (до 11%). Наименее богаты железом легкие песчаные почвы, имеющие ( 1%). Тело человека содержит до 5 г железа, причем на долю крови приходится до 3 г. [c.225]

    Материальной точкой называют такое тело, размерами и формой которого можно пренебречь в данной задаче. Например, изучая движение искусственного спутника Земли, можно пренебречь его линейными размерами по сравнению с теми большими расстояниями, которые он проходит. В этой задаче спутник может рассматриваться как материальная точка. Материальную точку можно представить и как небольшую составную часть тела. [c.94]

    Как важнейшая составная часть этих наиболее сложных органических веществ фосфор играет в жизненном процессе совершенно исключительную роль. Биологическое значение органических фосфорных соединений и их химическое строение были уже рассмотрены. Часть неорганического фосфата, циркулирующего в теле, связана с белками плазмы и в этой форме осмотически неактивна. [c.390]

    Настоящее исследование предпринято с целью изучить действие растворенного тела на смесь двух растворителей. Вступая в жидкость, состоящую из частиц химически однородных, растворенное тело производит в ней ряд изменений, выражающихся понижением температуры замерзания, повышением температуры кипения и т. д. Эти свойства раствора хорошо изучены. Иную картину изменений возможно предположить в системе более сложной. Переходя в раствор и встречаясь с частицами химически неоднородными, растворенное вещество нарушит форму равновесия, установившуюся между частицами смеси, и произведет, кроме обычных изменений свойств, ряд изменений, зависящих от отношения вступающего тела к составным частям жидкости. Чем больше различия в отношении растворенного вещества к отдельным частям растворителя, тем резче должны быть выражены изменения, которые характеризуют растворение в сложной жидкости. Изменяя химическую функцию растворенного тела и частей растворителя, мы вправе ожидать ряда явлений, не имеющих места в более простых случаях растворения и указывающих вместе с тем новую связь общих свойств раствора с химическим взаимодействием частиц, его образующих. [c.45]

    Уравнение в частных производных второго порядка (9.11) может быть решено аналитически для тел простых классических форм (безграничная плоская стенка, шар, бесконечный цилиндр, полубезгранич-ный массив, тела составных форм). [c.518]


    XVII в. были противопоставлены не только новые идеи об элементах как простейших составных частях тел, инвариантных по отношению к сложным телам, но еще и обновленные атомистические представления, базирующиеся также на материалистической основе. Казалось бы, что такое сдвоенное противопоставление должно было ускорить падение алхимии. Но в действительности сложения сил не получилось. Ренессанс античной атомистики оказался преждевременным он не имел тогда еше таких эмпирических оснований, какие появились лишь в конце XVI11 — начале XIX столетии в форме стехиометрических законов (см. об этом ниже), и потому носил спекулятивный характер. В то же время, претендуя на принципиально новое объяснение генезиса свойств веществ посредством образования количественно и качественно различных сочетаний брс-качественных атомов, он до известной степени противопоставлял себя выводам эмпирического естествознания о возможности достижения пределов химического разложения сложных тел и выделения элементов как инвариантов состава. [c.34]

    Все существующие тела являются mixta (составными). Они состоят из разнородных частой, различающихся формой, иеличипой, расположением и движением таковы паша вода, земля, воздух, эфир... Простые тела и элементы, хотя и не существуют в чистом и обособленном виде, тем не менее могут мыслиться умом (курсив нанг. — Ю. С.) как реальна отличные .  [c.52]

    Открытие аргона и его аналогов явилось серьезным испытанием периодического закона. Ситуация слояшлась так, что для новых элементов не оказалось свободных мест в таблице элементов. Нулевая валентность, одноатомность молекул новых элементов вызывали большие затруднения в размещении инертных газов в периодической системе. Некоторым ученым (Р. Назипи, А. Ниччипи, Б. Браунер) казалось бесполезными усилиями попытки применить к аргону и другим недеятельным элементам периодический закон, так как элементы эти лишены самого основного свойства, на котором построена вся система,— способности давать соединения, и не могут встать в такую классификацию, где основанием всего является именно форма соединения элементов Они считали даже, что новые элементы низвергают периодический закон, так как периодическая система не может вместить их в себя даже по своему определению элемента, данному Д. И. Менделеевым Элемент — та вещественная составная часть простого или сложного тела, которая обусловливает его физические и химические свойства . [c.285]

    С присущей ему проницательностью Я. Берцелиус сумел найти связь между процессами брожения и превращения веществ в растительных и животных организмах, с одной стороны, и платины — с другой. В 1837 г. он сформулировал основные гголожения этой концепции. Было показано,—писал он,—что многие как простые, так и сложные тела как в твердой форме, так и в растворенной обладают способностью влиять па составные тела влиянием, полностью отличным от нормального химического сродства, между тем как эти тела могут вызвать перестановку составных частей таких тел без необходимого участия в реакции их компонентов, хотя это может время от времени случаться. Это новая сила для ироявления химического действия, общая для неорганического и органического мира, которая, возможно, имеет гораздо большее распространение, чем мы до сих пор полагали, и ее природа от нас еще скрыта. Если я назвал это новой силой, то не из-за моего на- [c.350]

    Далее он дает определение катализа, естественно, придерживаясь принципов электрохимической теории, которая, однако, не объясняет каталитические явления. Многие как простые, так и сложные тела в твердом виде и в форме раствора,— говорит он,— обладают свойством влиять на сложные тела особенно, совсем отлично от обычного химического сродства. Это выражается в том, что они в этом сложном теле производят превращение составных частей в другие соотношения, причем вовсе не обязательно, чтобы они сами своими составными частями принимали участие в этом процессе, хотя иногда и это имеет место . Вслед за этим идет ха(рактеристика указанных явлений. Но эта характеристика своеобразна, так как причина их, как подчер- [c.35]

    Основателем ятрохимии был швейцарский немец Теофраст Парацельс, утверждавший, что настоящая цель химии заключается не в нзго-товлении золота, а в приготовлении лекарств . Ятрохимия выражала стремление слить медицину с химией, переоценивая роль химических превращений в организме и придавая определенным химическим соединениям способность устранять обнаруживающиеся в организме нарушения равновесия. Если человеческое тело состоит из особых веществ, то происходящие в них изменения должны вызвать болезни, которые могут быть излечены лишь путем применения лекарств, восстанавливающих нормальное химическое равновесие. Вот примерно выраженная на современном языке мысль, которой руководствовался Парацельс при развитии ятро-химического учения. Парацельсовская идея о том, что жизненные явления обладают химической природой и что здоровье зависит от нормального состава органов и соков, не может не быть привлекательной даже для современного биохимика. Однако научную ценность она приобрела только тогда, когда воедино слилась с экспериментальным методом и, следовательно, обратилась к достоверным способам определения химического состава органической материи. Ни Парацельс, ни другие ятрохимики не могли тогда сформулировать эту проблему в такой форме они были сынами своего времени и поэтому обратили внимание на абстрактную сторону проблемы, как это позволяла тогда сделать наука. Нельзя сказать, что Парацельс не придавал никакого значения опыту, поскольку до него никто не проявил себя таким противником традиционной науки как в самом лагере схоластики, так и в области медицины, придерживавшейся еще древних принципов Галена. Но истолкование опытов было абстрактным, потому что еще не существовало настоящего экспериментального метода. Парацельс заимствовал из алхимической традиции учение о том, что существуют три основные составные части материи — ртуть, сера и соль, которым соответствуют свойства летучесть, горючесть и твердость. Эти три элемента составляют основу макрокосма [вселенной], но относятся и к микрокосму [человеку], образованному духом, душой и телом. [c.61]

    Хотя спектроскопические проявления физической адсорбции, как было показано, аналогичны изменениям спектра в процессе конденсации жидкой фазы, в то же время на спектр адсорбированных молекул оказывает дополнительное влияние асимметричность силового поля поверхности твердого тела. В отличие от раствора, где молекула со всех сторон окружена растворителем, на поверхности молекула испытывает одностороннее действие окружающей среды. Это асимметричное действие вызывает искажение структуры молекулы, при котором в инфракрасном спектре начинают проявляться определенные колебания, первоначально запрещенные правилами отбора с точки зрения симметрии. На рис. 125 представлена примерная форма валентных колебаний СН молекулы этилена и приведены частоты соответствующих полос поглощения газовой фазы в инфракрасном спектре и в спектре комбинационного рассеяния. В газовой фазе только колебания Vg И Vil сопровождаются изменением дипольного момента и вызывают поглощение в инфракрасном спектре. Симметричные колебания Vi и V5 не имеют полос поглощения в инфракрасном спектре, однако они вызывают изменение поляризуемости и проявляются поэтому в спектре комбинационного рассеяния. Правила отбора, определяющие появление полос поглощения в спектре, могут нарушаться, если молекула попадает в асимметричное силовое поле поверхности адсорбента. Этим объясняется появление полосы Vi при ЗОЮ см (рис. 124, табл. 44) в спектре этилена, адсорбированного на пористом стекле (Шеппард и Иейтс, 1956). Наряду с этой полосой наблюдались две интенсивные полосы поглощения при 3100 и 2980 см колебаний Vg и Vil, которые разрешены в инфракрасном спектре. При более высоком разрешении Литтл (1961) наблюдал в спектре этилена, физически адсорбированного на пористом стекле, четвертую полосу около 3070 см (рис. 126). Эта полоса была приписана валентному колебанию СН (V5), которое обычно появляется только в спектре комбинационного рассеяния (см. рис. 125). Отнесение этой полосы к колебанию, проявляющемуся в спектре комбинационного рассеяния при 3108 и 3075 см для газообразного и жидкого этилена соответственно, впервые было сделано Стойчевым (1953). Однако на основании проведенных позднее исследований инфракрасного спектра твердого этилена (Довс, 1962) полосу поглощения при 3066 см следует отнести не к валентному колебанию СН (Vs), а к составному тону более низкочастотных колебаний. [c.372]

    Обычно Бойлю приписывается заслуга введения в химию термина анализ ( ava/.usts — разложение ), под которым он понимал способы разделения тел и определения их составных частей. Для производства качественного анализа Бойль применял различные чувствительные реактивы и по явлениям осаждения, по цвету и форме осадков, по изменению цвета испытываемых растворов судил о присутствии в них тех или иных веществ. Так, серную кислоту он узнавал по осадку, образующемуся при добавлении к раствору известковых солей, соляную — при помощи раствора ляписа (нитрата серебра), соли меди он определял по синему окрашиванию при добавлении к раствору избытка аммиака или летучей щелочной соли (карбоната аммония), железо определялось им по черному окрашиванию при добавлении к раствору настоя чернильных орешков или настоя дубовой коры и т. п. Кроме того, Бойль ввел в употребление индикаторы в растворах или пропитывал ими бумажки. Так, кислоты и щелочи он узнавал по изменению цвета настоек лакмуса, фиалок и васильков. [c.212]

    Развитие представлений о горении и кальцинации металлов происходило в тесной связи с учениями о составных частях сложных тел. На общем фоне господства многих традиционных пережитков средневековья, схоластических догматов и алхимических верований эти учения нередко принимали уродливые формы. Единой точки зрения по вопросу об основных первоначалах тел не существовало. Одни химики придерживались учения о трех первоначалах снагириков, а другие признавали лишь старинное аристотелевское учение о четырех элементах-качествах большинство же химиков XVII в. пыталось примирить оба учения, придумывая при этом различные гипотетические принципы вещей четвертые, наконец, такие, как Бойль, высказывали сомнение в справедливости учений перипатетиков и снагириков, формулировали повые идеи, но были непоследовательными в их приложении к объяснениям химических явлений. [c.233]

    Каким образом в организме животных синтезируются холестерин и его производные, окончательно еще не выяснено, но возможность образования холестерина в теле человека и животных из более простых соединений не подлежит сомнению. В тканях животных, получавших в течение длительного времени пищу, искусственно освобожденную от холестерина и его эфиров, содержание холестерина заметным образом не изменяется, несмотря на постоянное выведение стеринов из организма вместе с калом в форме так называемого конростерина (стр. 104). Точно так же концентрация холестерина в крови животных обычно не падает ниже 120— 150 мг% даже при бесхолестериновой диете. Холестерин является постоянной составной частью желчи, а копростерин — постоянной составной частью кала при любом составе пищи. Выведение этих соединений с желчью и калом почти не зависит от характера питания. Даже в первородном кале (меконии), накапливающемся в кишечнике плода в период его утробной жизни, всегда удается обнаружить некоторое количество холестерина и копростерина. Дети грудного возраста и молодые животные, питающиеся исключительно молоком и, следовательно, получающие с пищей недостаточное количество холестерина, также растут и развиваются нормально, причем общее количество различных стеринов (в том числе и холестерина) в их тканях непрерывно увеличивается вместе с ростом тела. [c.295]

    Прежде всего в отмываемый сосуд наливают горячую воду и тщательно прочищают его внутри и снаружи специальными щетками (ершами) различных форм и размеров. Затем сосуд промывают горячим раствором мыла или соды, также с помощью ершей. Наконец, сосуд хорошо промывают водопроводной водой. После этого приступают к тщательному обезжириванию поверхности стекла хромовой смесью. Необходимо избегать попадания хромовой смеси на кожу рук и лица, а также на платье, так как она быстро разрушает ткань и может вызвать сильные ожоги. Если хромовая смесь попала на руки, лицо или тело, немедленно промывают это место большим количеством водопроводной воды, а затем 10% -ным раствором гидрокарбоната натрия NaH Os. Для тщательной очистки поверхности стекла от следов загрязнений, часто действующих каталитически на некоторые реакции, применяемые в объемном анализе, рекомендуется пропаривать стеклянную посуду в течение нескольких минут. Для этого применяют специальное приспособление (рис. 72). Очищаемый сосуд надевают на стеклянную трубку, по которой струя пара бьет в дно пропариваемого сосуда. При этом также достигается и выщелачивание растворимых составных частей стекла. Пропаривание продолжают до прекращения образования отдельных капель на стенках очищаемого [c.466]

    Закон сохранения веса (массы) вещества заключается в том, что в замкнутой системе тел вес масса) веш,естаа остается постоянным, независимо от тех изменений, которые происходят с веществом в этой системе. Иначе говоря, материя не может быть создана из ничего, а также не. иожет бесследно исчезнуть. Отсюда вытекает, что количество (масса, вес) вещества в любом замкнутом цикле производства, в любом замкнутом аппарате остается постоянным. Вещество здесь может принимать только другую физическую форму (например, из газа превратиться в жидкость, твердое тело, или наоборот) или же изменить свой состав, т. е. претерпеть то нлп иное химическое превращение (например, разложиться на составные части, если это было сложное вещество, или соединиться с другим веществом, образуя тем самым новое вещество, и т. д.). Но в каждом отдельном случае количество вещества, которое входит в аппарат, должно быть равно количеству вещества, выходящему из этого аппарата. Таким образом, закон сохранения веса вещества принимает следующую простую формулировку вес исходных продуктов процесса должен быть равен весу его конечных продуктов. Это и является основой составления любого материального баланса всего процесса, или аппарата или только какой-либо его части. Следовательно, когда производится материальный подсчет, необходимо учитывать вес каждого компонента, поступающего в данный аппарат(приход), и вес каждого компонента, уходящего из аппарата (расход). При этом в результате сумма прихода компонентов должна быть равна сумме расхода их независимо от состава продуктов при поступлении и выходе, т. е. независимо от того, каким изменениям они подвергались н]1м прохождении через данный аппарат. [c.13]

    Многие органические кислоты находятся в растениях в значительном количестве такова, напр., винная кислота, находящаяся в соке виноградных ягод и в кислом соке многих плодов, 0н 0 такова яблочная кислота, находящаяся не только в незрелых яблоках, но и в более значительном количестве в рябине, ОН 0 лимонная кислота, находящаяся в кислом соке лимонов, в крыжовнике, клюкве и др., С Н 0 щавелевая кислота, С Н О , находящаяся в кислице и щавеле, и множество других. Иногда эти кислоты находятся в растениях в виде свободном, иногда в виде солей так напр., винная кислота находится в винограде в форме соли, известной в аптеках под названием remor tartari, а в нечистом виде называемой винным камнем, С Н КО . Между углекислым газом и этими органическими кислотами существует прямая связь все они, в тех или других обстоятельствах, выделяют углекислый газ все могут быть при посредстве его получены из тел, вовсе не имеющих кислых свойств. Лучшим доказательством этому могут служить следующие примеры уксусная кислота, входящая в состав уксуса С №0 , будучи пропущена в виде паров чрез накаленную трубку (особенно, если в ней находится щелочь), разлагается на углекислый и болотный газы = Q2 -f- С№. Но она может быть получена и обратно из тех составных частей, на которые распадается. Если в болотном газе заменив (косвенным путем) пай водорода натрием и получим тело H Na, то оно поглощает углекислый газ, образуя соль уксусной кислоты, из которой легко уже получить и самую уксусную кислоту H Na + -f- СО = №Na02. Водород болотного газа вовсе не имеет свойства прямо, как в кислотах, замещаться металлами, т.-е. С№ не имеет кислотного характера, но, чрез присоединение элементов углекислого газа, приобретает свойство кислоты. Так точно изучение и всех других органических кислот показывает, что кислотный их характер зависит от содержания в них элементов углекислого газа. Оттого нет истинной органической кислоты, содержащей в частице меньше кислорода, чем в углекислом газе все органические кислоты содержат в частице, по крайней мере, два атома кислорода, как и углекислый газ. Если прибавка СО возвышает основность, то выделение СО ее уменьшает. Так, из двуосновных щавелевой С Н О или фталевой С Н 0 кислот чрез выделе- [c.279]

    Так как растения всегда содержат зольные (минеральные) вещества и не могут развиваться в среде, не содержащей их, и именно лишенной солей четырех основных окислов К- О, СаО, MgO и Fe O и четырех кислотных СО-, №0 , Р О и SO и так как зольных веществ всегда в растениях немного, то невольно спрашивается какую роль игрвют они в развитии растений Один только ответ на этот вопрос возможен при современном запасе химических данных, хотя и он представляет еще только гипотезу. Ответ этот особенно ясно выражен профессором Петровской земледельческой академии Г. Г. Густавсоном. Исходя из того, что (гл. 11, доп. 309) малое количество [бромистого] алюминия делает возможною и легко идущею при обыкновенной температуре реакцию брома на углеводороды, легко дойти до заключения, весьма вероятного и согласного со многими данными относительно реакций углеродистых соединений, что прибавленные к углеродистым соединениям минеральные вещества понижают температуру реагирования и вообще облегчают химические реакции в растениях и тем содействуют превращению простейших питательных веществ в сложные составные части растительного организма. Область химических реакций, производимых в органических веществах присутствием малого количества минеральной подмеси, до сих пор мало затронута, хотя есть уже несколько отрывочных фактов этого рода и хотя известно не мало таких же реакций неорганических соединений. Сущность дела можно выразить так тела А и В не реагируют друг на друга сами по себе, но прибавка малого количества третьего, особо деятельного, тела С производит реакцию А на В, потому что А соединяется с С, получается АС, а на это новое тело, имеющее иной запас химической энергии, В, реагирует, образуя соединение ДБ или его продукты и вновь освобождая С или удерживая его. Заметим здесь, что все минеральные вещества, необходимые растениям (исчисленные в начале дополнения), суть высшие солеобраэные соединения элементов что они поступают в растения в виде солей что низшие формы окисления тех же элементов (напр., соли сернистой и фосфористой кислот) вредны растениям (ядовиты) и что крепкие растворы воспринимаемых растениями солей (их осмотическое давление велико) не только не поступают в растения, но их [c.338]


Смотреть страницы где упоминается термин Тела составной формы: [c.93]    [c.228]    [c.70]    [c.37]    [c.55]    [c.64]    [c.268]    [c.98]    [c.598]    [c.281]    [c.653]    [c.160]    [c.23]    [c.154]    [c.460]    [c.378]    [c.637]    [c.9]   
Смотреть главы в:

Теплообменные процессы химической технологии -> Тела составной формы




ПОИСК







© 2025 chem21.info Реклама на сайте