Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Правила отбора для дипольных переходов

    ХЛ==Гф . Если удовлетворяются правила отбора для перехода Е, соответствующего некоторой колебательной частоте, то говорят, что эта частота активна в инфракрасной области спектра, так как она будет присутствовать в спектрах испускания и поглощения электромагнитных волн соответствующей частоты, Такие колебания всегда сопровождаются изменением дипольного момента молекулы. [c.664]


    Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния. Оба эти метода дают возможность установить характеристические частоты колебаний молекулы. Для большинства молекул полная совокупность колебательных частот может быть получена только при совместном использовании и ИК-спектра, и спектра КР. Это связано с различием интенсивности полос в этих спектрах для разных типов колебаний. Такое различие особенно велико у молекул, обладающих высокой симметрией. В этих случаях некоторые полосы в ИК-спектрах могут иметь коэффициент поглощения, близкий к нулю, а другие — сравнительно низкую интенсивность в спектре КР. Говоря более строго, симметрия молекулы может привести к появлению правил отбора. Для переходов в ИК-спектре и спектре КР они различны, так как интенсивность полосы в обоих случаях зависит от различных электрических свойств молекулы. Для ИК-переходов необходимо изменение дипольного момента при колебании, для переходов в спектре КР—изменение поляризуемости. Отсюда следует, что в двух спектрах одновременно могут проявиться лишь немногие частоты, и потому нужны оба спектра. [c.68]

    В принципе, не обязательно возможны все мыслимые переходы между различными уровнями. Правила отбора разрешенных переходов, как и интенсивность соответствующих им полос в спектре,, определяются свойствами волновых функций Тгъ характеризующих состояния, между которыми происходит переход, и квантово-механическими операторами собственного или наведенного дипольного момента, которые совпадают с классическими выражениями этих электрических моментов. [c.177]

    Переход между двумя уровнями возможен только при изменении электрического дипольного момента системы или ее квадрупольного и т. п. момента, магнитного момента, поляризуемости, а также при возбуждении молекулы ударом электрона, атома, иона. Каждому из перечисленных процессов соответствует своя величина р. Наиболее часто в формуле (43.6) величина р — электрический дипольный момент системы. Тогда величина У " " называется дипольным моментом перехода. В дальнейшем, где специально не оговаривается, речь будет идти именно о спектрах, связанных с электрическим дп-польным моментом перехода (спектры поглощения и испускания). Если дипольный момент перехода равен нулю, электрическое дипольное излучение или поглощение невозможно, соответствующий переход запрещен. Из (43.6) следуют так называемые правила отбора, позволяющие предсказывать невозможность тех или иных переходов. [c.144]


    Гомонуклеарные молекулы Hj, Oj, lj и т. п. не имеют дипольного момента, и при колебаниях он не появляется. Поэтому = О и эти молекулы неактивны в спектрах поглощения и испускания. Гетеронуклеарные молекулы типа НС1, НВг, КС1 и т. д., напротив, активны в этих спектрах, так как их дипольные моменты изменяются при колебаниях, и тем сильнее, чем более они полярны. Из вида волновых функций 1 5 ол следует правило отбора для гармонического осциллятора переходы с поглощением или испусканием света возможны только между соседними уровнями  [c.159]

    Второе правило отбора требует, чтобы дипольный переход между конфигурациями был одноэлектронным с изменением квантового числа Л/= 1 для магнитного перехода Д/ = 0, для квадрупольного М = 0, 2. [c.227]

    Тип перехода в УФ- и видимой области можно определить по величине молярного коэффициента погашения первые два типа запрещены в дипольном излучении, е изменяется от 1 до 500 в зависимости от симметрии комплекса и выполнения правил отбора по /, / , 5 для дипольного, магнитного и квадрупольного излучения. Для полос переноса заряда значение ь- порядка 10 - 10"  [c.243]

    Условием для получения колебательных и вращательных спектров поглощения или испускания является изменение дипольного момента, тогда как переходы, наблюдаемые в спектрах Ki связаны с изменением поляризуемости молекул. Благодаря различию правил отбора ИК-спектроскопия и спектроскопия КР существен но дополняют друг друга. [c.267]

    Определить правила отбора в молекуле ЫНз (группа симметрии Сз ) для электрических дипольных переходов. [c.38]

    Переходы, для которых О = О, называют запрещенными в дипольном приближении. Большая часть возможных переходов в атоме запрещена, в связи с чем в спектроскопии важное значение имеют правила отбора для разрешенных переходов. [c.44]

    Так как кинетическая энергия не квантуется, то при переходах с поглощением энергии E>Dq эта энергия может принимать уже не строго определенные, а любые значения. В ИК-спектре этому соответствует переход от линейчатого поглощения к сплошному. По частоте, соответствующей границе сплошного поглощения, легко определить энергию диссоциации молекулы. Важное правило отбора в ИК-спектрах связано с разрешенностью переходов между колебательными уровнями при поглощении ИК-излучения. Активны в ИК-спектрах только те колебания, которые сопровождаются смещением центра электрических зарядов молекулы, т. е. изменением дипольного момента. Поэтому колебания таких молекул, как СО, NO, НС1, проявляются в ИК-спектрах, а колебания симметричных молекул Нг, N2, СЬ не проявляются. [c.201]

    Существуют еще достаточно общие причины кажущихся нарушений электронных правил отбора. Во-первых, столкновения с другими атомами или молекулами либо влияние электрических или магнитных полей могут нарушать правила отбора, введенные для состояний невозмущенных частиц. Во-вторых, хотя переход может быть запрещен для дипольного взаимодействия, возможны магнитные дипольные или электрические квадрупольные переходы (более слабые). [c.42]

    Если статическое поле Н относительно слабее внутренних - магнитных полей атома, то оно не нарушает спин-орбитальной связи, и поэтому вокруг направления Н будет процессировать результирующий вектор момента /. Под действием поля в этом случае энергетический уровень атома расщепляется на 2/ + 1 эквидистантных магнитных подуровней (зее-мановское расщепление). Под действием переменного магнитного поля с частотой V возможны магнитные дипольные переходы (с правилами отбора для магнитного квантового числа т, определяемого соотношением / /п —] т = ) между соседними подуровнями, если выполняется резонансное соотношение (правило частот Бора)  [c.715]

    Если спин-орбитальное взаимодействие не пренебрежимо мало, то при электрическом дипольном излучении могут появиться переходы,, связанные с нарушением правила отбора А5 — 0. Такие переходы образуют довольно важную группу запреш енных переходов. В этой группе особенно часты синглет-триплетные переходы. [c.55]

    За время жизни пары ( М М ) происходит спиновая динамика, происходят переходы с изменением суммарного спина S. Одним из механизмов изменения S для пары триплетов является, например, диполь-дипольное взаимодействие двух неспаренных электронов в триплетной возбужденной молекуле. Из этих рассуждений видно, что аннигиляция триплетов формально аналогична рекомбинации радикалов имеется спиновое правило отбора для процесса, образуется промежуточное состояние пары реагентов, в котором осуществляется спиновая динамика, и пара может переходить из реакционноспособного состояния в нереакционноспособное и наоборот. В итоге, также как и для рекомбинации радикалов, аннигиляция триплетов обнаруживает зависимость от постоянного и переменного магнитных полей. [c.142]


    В 3 гл.III уже было показано, что вероятность испускания или поглощения света, т.е. вероятность перехода, вынуждаемого внешним монохроматическим электромагнитным полем, пропорциональна квадрату модуля дипольного момента перехода, а для плоскополяризованного излучения при фиксированной ориентации молекулы - квадрату модуля соответствующей компоненты дипольного момента. Поэтому, если матричный элемент дипольного момента перехода по симметрии обращается в нуль, вероятность перехода будет также равна нулю. В таких случаях говорят, что переход запрещен по симметрии, в противном же случае говорят о разрешенных переходах. Установление только лишь на основании соображений симметрии того, являются ли переходы из каждого заданного состояния в состояния той же или другой симметрии разрешенными или запрещенными, носит название отбора переходов, а потому совокупность общих утверждений о том, какие переходы запрещены по симметрии (все же остальные, очевидно, разрешены), носит название правил отбора по симметрии [c.228]

    Рассмотреть правила отбора для дипольных переходов у системы зарядов с внешним полем, имеющим симметрию точечной группы а) б) С , и в) 8 . [c.230]

    Найти правила отбора по симметрии для дипольного момента перехода гармонического осциллятора. [c.230]

    Пусть оператор Гамильтона явно от спиновых операторов не зависит. Как можно сформулировать тогда правила отбора по спину для дипольных моментов перехода  [c.230]

    Таким образом, чтобы понять, как происходит поглощение света, нужно иметь представление об энергетических уровнях молекул. Необходимым условием поглощения света является не только совпадение энергии кванта с разностью 2 — 1, но и изменение дипольного момента молекулы при переходе последней с одного энергетического уровня на другой. Только в этом случае электрическое поле световой волны будет взаимодействовать с молекулой. Еще одно ограничение, налагаемое на процесс поглощения света, связано с симметрией волновой функции, соответствующей каждому из данных энергетических уровней. Квантовомеханическое рассмотрение показывает, что переходы между одними энергетическими уровнями разрешены, тогда как между другими запрещены. Хотя изложение этих вопросов выходит за рамки данной книги, читатель должен сознавать, что лежащие в их основе квантовомеханические правила отбора являются определяющим фактором поглощения света веществом. [c.8]

    Такое правило отбора дпя чисто электронных переходов является важнейшим фугие правила отбора связаны уже с отдельными составляющими (по осям х,уиг) вектора дипольного момента молекулы На них останавливаться не дем [c.344]

    Квантовомеханическое рассмотрение переходов между колебательными уровнями показывает, что для гармонического осциллятора с дипольным моментом, пропорциональным межъядерному расстоянию, правило отбора имеет вид [c.463]

    Определяемые симметрией правила отбора для спектральных переходов в случае конечных точечных групп устанавливаются так же, как это было показано для групп вращения (см. гл. 3). Произведение представлений исходного и конечного состояний должно содержать в своем разложении представление какой-либо компоненты дипольного оператора. В случае бензола компонента дипольного момента ц преобразуется по [c.292]

    Рассмотрим вращательные спектры молекул типа симметричного волчка (см. 134). Волновые фуикции вращательных состояний таких молекул определяются выра кением (134,10), а энергетические уровни — формулой (134,14). Для вычисления правил отбора, соответствующих 1-переходам (дипольное электрическое излучение), надо рассмотреть матричные элементы дипольных электрических переходов на функциях (134,10). В адиабатическом приближении вращение молекулы не сопровождается изменением электронного и колебательного состояний, поэтому при переходе функции фд остаются неизменными, и достаточно рассмотреть только функции [c.661]

    Для молекул типа асимметричного волчка при определении правил отбора для вращательного спектра надо пользоваться функциями (134,19). Тогда можно показать, что 1-переходы между вращательными состояниями могут возникать только в том случае, когда молекула обладает собственным электрическим дипольным моментом. При этом правила отбора для пол- [c.662]

    По полосам поглощения, которые лежат в инфракрасной области спектра, измеряют расстояния между колебательными уровнями энергии. Если бы колебания молекул были истинно гармоническими (т. е. если бы возвращающая сила была пропор-щюнальна квадрату смещения атомов от положения равновесия), то значения энергии, соответствующие колебательным уровням, давались бы выражением =/гVg(л-f-1/2), где Vg—основная частота колебаний, а п может принимать значения О, 1, 2, 3 и т. д. (Это известно из любого учебника квантовой механики.) Правила отбора допускают переходы только между соседними уровнями. В результате частоты поглощения V, соответствующие колебательным переходам, будут точно совпадать с основными частотами г,. Однако в действительности колебания молекул не являются истинно гармоническими, поэтому это совпадение на самом деле только приблизительное. Тем не менее для каждого основного колебания должна наблюдаться одна полоса поглощения и V должно иметь значение, очень близкое к значению Vf,. Дополнительное правило отбора для поглощения инфракрасного излучения сводится к тому, что наблюдаются только те колебания, при которых меняется дипольный момент молекулы. [c.93]

    В комплексах изменяются также правила отбора для дипольного и 1лучения по У и I (в магнитном и квадрупольном излучении эти правила сохраняются). Становятся возможными переходы с ДУ>1 и Д >1, а именно AJ (АЦ 2 в полях с центром симметрии и ДУ(Д ) 4 —без него (вынужденное дипольное излучение). [c.238]

    Переходы, для которых Dftj = 0, называются запрещенными в дипольном приближении, и соответствующие этим переходам спектральные линии отсутствуют в наблюдаемом спектре. Большая часть возможных переходов в атоме запрещена, в связи с чем в спектроскопии важное значение имеют правила отбора для разрешенных переходов. [c.40]

    Для определения возможности дипольного перехода между двумя состояниями могут быть использованы некие формальные правила, называемые правилами отбора. Целесооб- [c.39]

    Правила отбора для нелинейных молекул, обладающих некоторыми элементами симметрии, могут быть также основаны на рассмотрении свойств симметрии. Если молекула имеет центр симметрии, то существуют состояния g и и к дипольный переход требует изменения g u. Молекулы, симметричные в основном состоянии (Н2СО или МОа), имеют разрешенные по симметрии переходы А - Ви Вг, но переходы из А в Ад или из В1 в Вг запрещены. Аналогично для молекул, имеющих симметрию типа СбНб, не существует разрешенных по симметрии дипольных переходов из основного состояния А, в В,, В2 или в какое-либо другое состояние Л , и, поскольку молекула центросимметрична, переходы из основного состояния g в любое другое состояние g также запрещены. [c.40]

    Дальнодействующие процессы переноса энергии могут происходить в результате последовательного короткодействующего возбуждения многих частиц, так что возбуждение возникает на участках, удаленных от места первоначального возбуждения. Однако имеет место и прямой механизм дальнодей-ствующих процессов переноса энергии за счет электрического, или кулоновского, взаимодействия между дипольными моментами перехода (или более высокими мультиполями). Именно муль-типоли участвуют в оптическом взаимодействии с электрическим вектором излучения стандартные оптические правила отбора применимы как к переходам так и к А - -А, при этом [c.121]

    Как уже отмечалось выше, переходы, не разрешенные электрическими дипольныйи правилами отбора, называются запрещенными. Такие запрещенные переходы могут все же иметь место или благодаря тому, что возможно не только дипольное излучение, или в связи с тем, что правила отбора справедливы лишь в определенном приближении. [c.54]

    Интерпретация и применение. К. с. многоатомных молекул отличаются высокой специфичностью и представляют сложную картину, хотя общее число экспериментально наблюдаемых полос м. б, существенно меньше возможного их числа, теоретически отвечающего предсказываемому набору уровней. Обычно осн. частотам соответствуют более интенсивные полосы в К. с. Правила отбора и вероятность переходов в ИК и КР спектрах различны, т.к. связаны соотв. с изменениями электрич. дипольного момента и поляризуемости молекулы при каждом нормальном колебании. Поэтому появление и интенсивность полос в ИК и КР спектрах по-разному зависит от типа симметрии колебаний (отношения конфигураций молекулы, возникающих в результате колебаний ядер, к операциям симметрии, характеризующим ее равновесную конфигурацию). Нек-рые из полос К. с. могут наблюдаться только в ИК или только в КР спектре, другие-с разной интенсивностью в обоих спектрах, а нек-рые вообще экспериментально не наблюдаются. Так, для молекул, не обладающих симметрией или имеющих низкую симметрию без центра инверсии, все осн. частоты наблюдаются с разной интенсивностью в обоих спектрах, у молекул с центром инверсии ни одна из наблюдаемых частот не повторяется в ИК и КР спектрах (правило альтернативного запрета) нек-рые из частот могут отсутствовать в обоих спектрах. Поэтому важнейшее из применений К. с.-определение симметрии молекулы из сопоставления ИК и КР спектров, наряду с использованием др. эксперим. данных. Задаваясь моделями молекулы с разной симметрией, можно заранее теоретически рассчитать для каждой из моделей, сколько частот в ИК и КР спектрах должно наблюдаться, и на основании сопоставления с эксперим. данными сделать соответствующий выбор модели. [c.431]

    Установление колебательных правил отбора осуществляется обычным способом. Произведение представлений исходного и конечного состояний должно содержать в своем разложении представление оператора перехода. В случае колебаний исходным состоянием является основное состояние, обладающее симметрией гамильтониана для основного состояния. Оно должно быгь полносимметричным. Вывод правила отбора основывается на том, что разрешенный колебательный переход должен происходить в возбужденное колебательное состояние, которое обладает трансформационными свойствами какой-либо компоненты оператора перехода. Для обычного поглощения или испускания излучения (инфракрасная спектроскопия) речь идет о компонентах дипольного оператора. В группе С20 компоненты дипольного оператора преобразуются по представлениям Ль В1 или В2. Все эти типы симметрии колебаний молекулы воды отвечают разрешенным в инфракрасном спектре переходам. В спектроскопии комбинационного рассеяния оператором перехода является оператор поляризуемости, который преобразуется как квадрат дипольного оператора. Его компоненгы зависят от декартовых координат как х , г/ г , ху, хг и уг. Представления, по которым преобразуются эти компоненты, обычно тоже указываются в таблицах характеров. Для группы С20 имеются компоненты поляризуемости, которые преобразуются по каждому из ее пред-сгавлений. Следовательно, любой тип колебаний молекулы с [c.335]


Смотреть страницы где упоминается термин Правила отбора для дипольных переходов: [c.171]    [c.37]    [c.50]    [c.156]    [c.154]    [c.162]    [c.154]    [c.162]    [c.32]    [c.420]    [c.500]    [c.177]    [c.420]   
Смотреть главы в:

Введение в квантовую химию -> Правила отбора для дипольных переходов




ПОИСК





Смотрите так же термины и статьи:

Дипольный переход

Правила отбора



© 2025 chem21.info Реклама на сайте