Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физиологические жидкости

    Прямую кондуктометрию применяют для определения содержания солей в физиологических жидкостях - сыворотке крови, слюне, желчи, желудочном соке, для контроля качества вш1, соков, напитков и т.п. Она используется для характеристики чистоты органических растворителей (ацетон, дихлорэтан и др.). Изменение удельной электропроводности, зависящей от содержания примесей, воды, длительности хранения, позволяет оценить также качество растворителей, влажность газов, текстильных материалов, бумаги, зерна и т.д. [c.157]


    Глазные вставки представляют собой стерильные твердые или мягкие препараты, предназначенные для вставки в конъюнктивальный мешок. Их размер и форма специально предназначены для офтальмологического применения. Они обычно состоят из матрицы, в которую включено или не включено действующее вешсство, или действующее вещестг во окружено мембраной, контролирующей скорость высвобождения [4]. Действующее вещество должно быть достаточно растворимо в физиологической жидкости и высвобождаться в течение определенного периода времени. "Inserts" могут быть использованы для местной или систем ной терапии. Основная задача офтальмологических "inserts" состоит в увеличении времени контакта между препаратом и конъюнктивой, что обеспечивает поддержание высвобождения для необходимого местного или системного действия. В сравнении с традиционными офтальмологическими препаратами (глазными каплями) глазные вставки обладают рядом преимуществ, а именно  [c.398]

    Кровь и другие физиологические жидкости представляют собой буферные растворы pH крови медленно отклоняется от нормального значения (около 7,4) при добавлении кислоты или основания. Наиболее важными веществами, определяющими буферные свойства крови, являются белки сыворотки (гл. 14), которые имеют основные и кислотные группы, способные соединяться с добавляемой кислотой или основанием. [c.346]

    Все важнейшие физиологические жидкости (кровь, лимфа, отделения многочисленных желёз и т. д.) представляют собой растворы. Процессы пищеварения и усвоения пищи в организме человека и животных неразрывно связаны с переводом питательных веществ [c.167]

    Растворы имеют важное значение в жизни и практической деятельности человека. Так, процессы усвоения пищи человеком и животными связаны с переводом питательных веществ в раствор. Растворами являются все важнейшие физиологические жидкости (кровь, лимфа и т. д.). Производства, в основе которых лежат химические процессы, обычно связаны с использованием растворов. [c.216]

    В природе и технике растворы имеют огромное значение. Растения усваивают вещества в виде растворов. Усвоение пищи связано с переводом питательных веществ в раствор. Все природные воды являются растворами. Растворами являются важнейшие физиологические жидкости — кровь, лимфа и др. Клеточный сок, например, состоит из воды и различных веществ, чаще всего в виде коллоидного раствора. Многие химические реакции протекают в растворах. [c.139]


    В природе и технике растворы имеют огромное значение. Растения усваивают вещества в виде растворов. Усвоение пищи связано с переводом питательных веществ в раствор. Все природные воды являются растворами. Растворами являются важнейшие физиологические жидкости — кровь, лимфа и др. Многие химические реакции протекают в растворах. [c.100]

    Растворы широко применяются в различных сферах деятельности человека. Они имеют большое значение для живых организмов. Человек, животные и растения усваивают питательные вещества в виде растворов. Сложные физико-химические процессы в организмах человека,. животных и растений протекают-в растворах. Растворами являются физиологические жидкости — плазма крови, лимфа, желудочный сок и др. В медицине применяются водные растворы солей, которые по составу соответствуют плазме крови. Эти растворы называются физиологическими. Их вводят в кровь при некоторых заболеваниях. Многие медицинские препараты являю-с растворами различных химических веществ в воде или спирте. Природная вода является раствором. Минеральные воды, которые представляют собой растворы углекислого газа, сероводорода, соединений железа, брома, йода и других веществ, применяют при лечении различных заболеваний. [c.159]

    Ионообменная ТСХ гидрофильных белков вполне возможна, но ее практически оттеснил более совершенный метод электрофореза в полиакриламидном геле и пленках ацетилцеллюлозы (последний метод нашел себе применение для клинических анализов физиологических жидкостей). [c.490]

    Собранные в пучки трубки образуют пористую систему - сито с отверстиями порядка миллионных долей миллиметра. Углеродные трубки можно собирать в различных сочетаниях и из получившихся элементов строить решетки с ячейками разных форм и размеров (рис.55). Меняя технологию получения материала, диаметр отверстий можно легко изменять. Пленки, образованные такими углеродными наносистемами, находят применение в мембранной технологии для разделения смесей по размерам атомов и молекул, стерилизации газов и физиологических жидкостей путем прямой фильтрации вирусов. [c.102]

    Примечания. Физиологические жидкости — сыворотка, моча и др. — содержат как моноаминодикарбоновые кислоты, так и их амиды (аспарагин и глутамин).. Их разделение требует специальных методов, обзор которых сделан Бенсоном и др. [I]. [c.178]

    При исследовании любого материала (белкового гидролизата, физиологической жидкости, синтетического материала и др.) количество анализируемого образца в среднем должно быть 0,25— 0,35 мкмоля (при длине кюветы 6,6 мм), причем нижний предел — не ниже 0,1 мкмоля, а верхний — не выше 1,0 мкмоля. Если анализатор снабжен микроспектрофотометром, то можно брать для анализа 0,05—0,075 мкмоля, а нижний и верхний пределы будут 0,001 и 0,3 мкмоля соответственно. [c.178]

    Программирование. Программирование анализа, т. е. выбор соответствующего аналитического метода, зависит от конкретной задачи. Если в лаборатории определенного профиля обычно проводят однотипные исследования, например анализы гидролизатов или физиологических жидкостей, рекомендуется ограничиться использованием какого-либо одного оптимального метода. Литература по автоматическому аминокислотному анализу очень обширна, к настоящему времени описано значительное число различных методик. Не имеет смысла перечислять все эти методики, поэтому ниже будут приведены лишь те, которые по нашему мнению наиболее удобны (фиг. 36 и 37). [c.179]

    Если исследуемый материал растворяется в этаноле в присутствии кислоты, его суспендируют в растворе 0,1 и. НС1 в 95%-ном этаноле, который осаждает следы белков, мешающих разделению. Для физиологических жидкостей (кровь, плазма и т. д.) такая обработка наносимого материала имеет большое значение. [c.248]

    Для разделения и количественного анализа аминокислот и родственных соединений в белковых гидролизатах и физиологических жидкостях предназначены автоматические аминокислотные анализаторы, выпускаемые многими фирмами. [c.91]

    Отличительными свойствами силоксановых герметиков являются высокая эластичность и гибкость в широком диапазоне температур, высокие показатели диэлектрических свойств, отличная свето- и погодостойкость, стабильность свойств при длительной эксплуатации в условиях резкого перепада температур, повышенной вибрации, тропического климата, УФ-излучения, нетоксичность и инертность в отношении физиологических жидкостей, гидрофобность и газонепроницаемость, стойкость к действию растворов солей, разбавленных кислот и оснований, некоторых минеральных масел (при наличии атома фтора — стойкость к действию топлив, смазок и масел), хорошие технологические свойства (возможность создания заливочных композиций и короткое время вулканизации). К недостаткам силоксановых герметиков относятся низкое сопротивление раздиру и истиранию, недостаточно высокая механическая прочность [3, 82, 104, 105]. [c.158]


    Так, для идеальных растворов твердого вещества в идеальной физиологической жидкости из уравнения Гиббса-Гельмгольца можно получить  [c.15]

    Фракционирование аминокислот — важная область применения ионообменной хроматографии, обеспечивающая в первую очередь анализ алпиюкислотного состава белков и пептидов после их исчерпывающего гидролиза, а также физиологических жидкостей и пище- [c.295]

    Капиллярные колонки. В колонках очень малого диаметра инертный носитель отсутствует и стационарная жидкая фаза просто покрывает внутренние стенки самой колонки, поэтому размывание полос, вызванное влиянием потока в колонках с твердым носителем, здесь полностью исключается, к тому же поток газа-носителя встречает гораздо меньшее сопротивление. Все это вместе взятое значительно увеличивает скорость и эффективность разделения. Колонки могут иметь огромную длину (часто до 100 м) и соответственно исключительно большое число теоретических тарелок — вплоть до 10 . Примером результата использования капиллярных колонок является изображенная на рис. 17-14 хроматограмма летучих компонентов мочи человека. Очень часто хроматография высокого разрешения позволяет обнаружить чрезвычайно сложный состав природных смесей, таких как физиологические жидкости или нефтепродукты. На хроматограмме, изображенной на рис. 17-14, обнаружено наличие в пробе свыше 200 различных компонентов и наглядно продемонстрирована высокая разрешающая способность капиллярных колонок. Из-за очень малого внутреннего диаметра (обычно 0,25 мм) такие колонки часто называют капиллярными , хотя достоинством конструкции таких колонок является не их малый диаметр, а то, что такая колонка представляет собой длинную незаполненную трубку. [c.579]

    Ряд компонентов, обычно содержащихся в природных водах и физиологических жидкостях, может предотвращать или изменять процесс осаждения фосфата кальция. В природных водах, в которых происходят биологические процессы, присутствуют компоненты цикла превращения лимонной кислоты описаны цитратные комплексы кальция. Однако механизм действия лимонной кислоты на скорость кристаллизации фосфата кальция не разъяснен [9]. Кроме свойства образовывать комплексы, которые могут эффективно снижать концентрацию свободных ионов кальция, участвующих в процессе роста кристалла, цитрат-ионы могли бы адсорбироваться на поверхности кристалла, блокируя таким образом центры кристаллизации.-Изучена кинетическая зависимость кристаллизации затравочного ГФ в присутствии ряда трикарбоновых кислот, участвующих в цикле Кребса  [c.19]

    Методы анализа фракций могут быть физическими, химическими и биологическими. Одним из лучших методов считается детектирование радиоактивных изотопов. Результаты измерений оформляют в виде кривой зависимости определяемой величины от объема злюата. По распределению пиков на хроматограмме судят о возможности объединения некоторых фракций, совершенно чистых, без примесей других компонентов. Методом ионообменной хроматографии можно разделять различные катионы и анионы, четвертичные аммониевые основания, амины, аминокислоты, белки, продукты гидролиза пептидов, физиологические жидкости, гидролизаты клеточных оболочек микробов, антибиотики, витамины, нуклеиновые кислоты. [c.361]

    Буферным действием обладают практически все физиологические жидкости и это имеет чрезвычайно большое биологическое значение. Для человека очень важно буферное действие крови изменение pH крови на несколько десятых приводит к серьезным нарушениям жизнедеятельности организма. Водородный показатель крови колеблется в пределах 7,3—7,4. В процессах обмена веществ в кровь может попасть большое количество органических кислот, однако pH крови остается всегда постоянным. Почвы и почвенные растворы также обладают определенной буфер-ностью и это очень важно для развития растений и почвенных микроорганизмов. Буфериость характерна и для клеточного сока растений. [c.121]

    ТСХ модифицированных ароматическими заместителями аминокислот в последние годы предпочитают вести на пластинках с полиамидным покрытием, поэтому из обзора Нидервизера процитируем только методы фракционирования немодифицированных аминокислот. Разумеется, ни по чувствительности и воспроизводимости результатов, ни тем более по точности количественных определений ТСХ аминокислот не может конкурировать с современными аминокислотными анализаторами. Однако существует немало ситуаций, когда возможности ТСХ оказываются вполне адекватными поставленной задаче определение аминокислотного состава, сопоставление родственных полипептидов, выявление генетических различий, проявляющихся в замене каких-либо аминокислот, клинические анализы физиологических жидкостей и др. На рис. 160 показана приведенная в цитируемом обзоре картина распределения пятен носле двумерной ТСХ модельной смеси аминокислот на иластинках с сп-ликагелевым покрытием. На старт вносили но 1 мкг каждой из ал1И-нокислот в 0,5 мкл 0,1 М раствора НС1. Элюцию в нервом направленип проводили смесью хлороформа, метанола и 17 %-ного аммиака (2 2 1), а во втором — смесью фенола и воды (3 1 но массе). [c.482]

    При анализе содержания в физиологических жидкостях свободных аминокислот встает задача предварительной полной очистки их от белков. Для малых объемов плазмы (5—25 мкл) была описана элегантная методика осаждения белка холодным (—30°) ацетоном в капилляре (100 X 0,6 мм) с последующим центрифугированием в нем же, после чего кончик капилляра с осадком белка просто обламывали [Arola et al., 1977]. [c.483]

    В тех случаях, когда нужно оценить содержание лишь нескольких, рано выходящих из колонки аминокислот, имеет смысл в качестве внутреннего стандарта использовать /)-глюкозаминовую кислоту < DGA ). Ее пик выходит раньше, чем Asp, имеет удобную для интегрирования форму и хорошо окрашивается нингидрином. Однако следует иметь в виду, что DGA не выдерживает условий кислотного гидролиза белка. Ее можно использовать при других видах гидролиза пли для оценки содержания аминокислот в физиологических жидкостях [Sta ey-S hmidt et al., 1982]. [c.527]

    Оболочки клеток, составляющих физиологические жидкости, в состоянии жизнедеятельности обладают свойством нолупро-ницаемости, т. е., пропуская воду, в то же время не пропускают растворенные в ней вещества. При введении раствора с большим осмотическим давлением (гипертонический) в результате разности осмотических давлений вода выделяется из контактирующих с раствором клеток, что приводит к их сморщи- [c.301]

    Деполимеризованный декстран, молекулярная масса которого близка к молекулярной массе альбумина сыворотки крови, используют в медицине как заменитель сыворотки крови. Для этого готовят 6%-ный раствор декстрана в физиологической жидкости, который по коллоидным и осмотическим свойствам близок к плазме крови. Этот раствор называют полигликином. [c.136]

    Новейшие методы ионообменной хроматографии, в частности высокоэффективная жидкостная хроматография (ВЭЖХ), широко используются в фармакологии (при создании и определении лекарственных веществ), в клинической биохимии (при определении биологически активных веществ в физиологических жидкостях), в биотехнологических процессах и производствах и других областях они позволяют определять вещества в нано-, пико- и фемтаграммных количествах. [c.29]

    Методы количественного анализа серусодержащих соединений в физиологических жидкостях приведены в [796], серу в фармацевтических препаратах определяют комплексонометрически [632], сульфат аммония в лечебных сыворотках титруют амперометрически [2]. [c.215]

    Пленкообразующие вещества, используемые для покрытия таблеток, по их растворимости делят на 4 груттттьт [20] 1) растворимые в воде и в желудочном соке 2) нерастворимые в воде, но растворимые в желудочном соке 3) не растворимые ни в воде, тш в физиологических жидкостях 4) растворимые в кишечттых жидкостях. [c.582]

    Проверка на большом числе проб крови п мочи показала, что описанные спо-с обы предварительной обработки позволяют достаточно полно удалить соединения, которые обычно содержатся в физиологических жидкостях и которые могут образовывать нерастворимые соединения с кремневольфрамовой и фосфорномо- и1бденовой кислотами. [c.225]

    Одно из положений современной биомедицины гласит что многие, если не все, заболевания вызваны в определенной сте пени отклонением от нормального течения некоторых из десят ков тысяч химических реакций, протекающих в клетках и тканях организма [244] Для диагностики заболеваний необхо димо однозначно установить связь между всеми известными за болеваниями и характеристическими изменениями биохимиче ского состава клеток и физиологических жидкостей Один из ша гов в этом направлении —детальный анализ характерных мно гокомпонентных смесей физиологических жидкостей Основным методом такого анализа стал ХМС метод, который практически [c.186]

    Органические кислоты Среди большого числа характеристических соединений важную роль играют органические кислоты, определению которых в физиологических жидкостях методом ХМС посвящено значительное число работ Так называемая фракция органических кислот физиоло1ических жидкостей содержит моно и поликарбоновые кислоты, моно и полигидро ксикислоты, кетокислоты, фенолы, гидроксибензолкарбоновые [c.191]

    Аминокислоты Имеется множество методов для выделения и анализа аминокислот в физиологических жидкостях Эти ме тодики используют метод ТСХ, высокоэффективную жидкостную хроматографию, хроматографию на бумаге и газовую хромато графию Основным недостатком анализа аминокислот с по мощью ГХ—МС является необходимость их выделения из био логических жидкостей для последующего анализа в газовой фазе Чаще всего для этой цели применяют ионообменн/ю хро матографию Однако меченые аминокислоты могут потерять изотопную метку при долговременном пребывании в водных растворах при низких значениях pH, что является необходимым условием ионообменной процедуры [c.197]

    Авторы работы [288] предложили новый метод выделения аминокислот из биологических жидкостей свободный от недо статков ионообменной очистки Метод быстр, удобен при анали зе большого количества образцов и позволяет получить амино кислоты в форме, удобной для последующего ГХ и ГХ—МС анализа Физиологическая жидкость (например, плазма) под кисляется до pH = 2 и экстрагируется диэтиловым эфиром для [c.197]

    Для измерения pH, рСОг и рОг при помощи электродов различных типов [16, 17] разработан ряд методик [18, 19, 20, 121]. Особенно большое значение в этом случае имеет метод отбора и хранения проб, поскольку парциальное давление кислорода и диоксида углерода в пробах цельной крови и плазмы, если не принять специальных мер предосторожности, сравняется с их парциальным давлением в воздухе. Кроме того, так как показания электродов зависят от правильности их градуировки и эксплуатации, их следует периодически (через каждые несколько часов) проверять, используя градуировочную смесь газов соответствующей концентрации. При помощи специальной компьютерной системы операцию градуировки можно автоматизировать. Физиологические жидкости удобно анализировать методом атомно-абсорбционной [22] и эмиссионной спектроскопии [23]. После соответствующей предварительной обработки исследуемый образец вводят в виде раствора в пламя, где происходит его атомизация. В эмиссионном спектральном анализе энергия пламени используется для возбуждения атомов. В результате перехода из возбужденного состояния в основное они испускают излучение с характеристическими длинами волн, интенсивность которого пропорциональна концентрации определяемых атомов в пламени. В атомно-абсорбционном анализе через атомный пар пробы пропускают излучение и регистрируют его. При этом интенсивность излучения снижается в соответствии с I) показателем поглощения элемента при той длине волны, при которой проводятся измерения, 2) длиной пути, пройденного излучением в образце, и 3) концентрацией определяемого элемента. Если первые две величины поддерживаются постоянными, то, измерив поглощение, можно установить концентрацию элемента. Эти два метода дополняют друг друга, и в каждом конкретном случае аналитик выбирает тот из них, который в данной ситуации более чувствителен и более точен. Эмиссионный спектральный анализ может быть менее селективен, чем атомно-абсорбцион-ный, и более подвержен спектральным помехам. Одни элементы можно определять и тем и другим методом (А1, Ва, Са), другие лучше анализировать методом атомно-абсорбционной спектроскопии (например, Ве, В1, Ли, 2п), третьи же целесообразнее определять атомно-эмиссионным методом (и, Ки, N. ТЬ и т. д.). [c.29]


Смотреть страницы где упоминается термин Физиологические жидкости: [c.461]    [c.524]    [c.525]    [c.268]    [c.583]    [c.606]    [c.24]    [c.56]    [c.187]    [c.84]    [c.84]    [c.188]   
Смотреть главы в:

Количественный ультрамикроанализ -> Физиологические жидкости




ПОИСК





Смотрите так же термины и статьи:

Жидкости силиконовые физиологические свойства

Методика анализа физиологических жидкостей

Минеральных маслах физиологических жидкостях

Определение йода в физиологических жидкостях (сыворотках)

Физиологические жидкости, анализ



© 2025 chem21.info Реклама на сайте