Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кремний и его важнейшие соединения Кремний и его свойства

    Алюминий, следующий за магнием, обладает заметной биологической активностью и является активатором некоторых энзимов,, а недостаток его в организме приводит к недостатку витамина Однако его роль все-таки значительно меньше, чем роль ионов натрия и магния. Атом алюминия слишком тян ел и велик для включения в структурную организацию клеток, а ион слишком мал и недостаточно поляризуем, чтобы попасть в число важнейших биологических катализаторов. Высокий заряд иона АР+ и склонность солей алюминия к гидролизу являются факторами, ограничивающими его роль в биохимических процессах. Другие качества, благоприятствующие участию в процессах жизнедеятельности (ковалентность связей, акцепторные свойства и т. п.) в большей степени присущи бору — аналогу алюминия во 2-м периоде. Предпочтительность бора, по сравнению с алюминием, доказывает предпочтительность элементов 2-го периода перед членами 3-го, Это становится особенно ясным при сравнении углерода с кремнием, который расположен в периодической системе под углеродом и так же как углерод способен к образованию четырех ковалентных связей. Кремния на Земле примерно в 135 раз больше углерода, но в биохимическую эволюцию включился все же углерод. Причина этого, в первую очередь, в стабильности связей С—С и 51—51. В первом случае расстояние между атомами в 1,5 раза меньше и соответственно энергия разрыва связи в 2 раза больше, т. е. связь С—С стабильнее. Поскольку построение организмов предполагает образование длинных цепей атомов, то устойчивые связи углерода имеют несомненное преимущество перед связями кремния. Кроме того, у кремния имеется лишь небольшая тенденция к образованию кратных связей. Все это делает соединения кремния неустойчивыми в присутствии воды, кислорода или аммиака. Однако кроме устойчивости другой очень важной особенностью биогенных элементов является способность к образованию кратных связей. Это можно проиллюстрировать сравнением свойств СОо и ЗЮг. В оксиде углерода (IV) между атомами С и О имеются кратные (двойные) связи, каждая из которых образована двумя парами общих электронов. Внешний слой каждого пз атомов в СОг приобретает стабильную структуру октета. Все возмол<-ности образования связей у этой молекулы исчерпаны. Благодаря легкости атомов и ковалентности связей СОг является газом, довольно легко растворяется в воде, реагирует с ней и в такой форме может быть использован живыми организмами. У кремния способность к образованию кратных связей практически отсутствует или, во всяком случае, гораздо ниже, чем у атома углерода. Поэтому атом 81 соединен с О простыми связями, при образовании которых остаются неспаренными два электрона у кремния и по одному у каждого из атомов кислорода. Лишенные возможно- [c.181]


    За последние несколько десятков лет благодаря рентгеноструктурным исследованиям в корне изменились представления в одном из наиболее сложных по химическому составу классов неорганических соединений — кислородных соединений кремния, называемых силикатами. Так как силикаты в большинстве своем нерастворимы в воде, то исследование их строения химическими методами оказалось чрезвычайно затруднительным и большей частью приводило просто к неверным результатам. А между тем кремний играет важную роль в неорганическом мире, подобно тому как углерод в органическом. Большинство горных пород, составляющих земную кору, состоит из силикатных минералов. В 95% всех минералов кремний—самая важная элементарная составная часть. Силикаты имеют и большое промышленное значение вся промышленность строительных материалов целиком базируется на них. Для объяснения их свойств было предложено большое количество предполагаемых структурных формул. Однако, как показали современные исследования, все эти формулы оказались неверными. Важность исследования строения этого класса соединений была настолько очевидна, что первые работы по установлению их структур были предприняты одним из основоположников рентгеноструктурного анализа У. Л. Брэггом, положившим начало кристаллохимии силикатов. Но только в последние годы, в основном, благодаря работам советских ученых во главе с Н. В. Беловым, были окончательно выяснены закономерности строения силикатов. [c.99]

    IV группы периодической системы. Кремний, его свойства. Наиболее важные соединения кремния, их получение и свойства. [c.66]

    Наряду с классификациями элементов, прямо связанными с периодической системой (периоды, группы, подгруппы, ряды, блоки), исторически сложились еще иные, которые отражают те или иные существенные особенности соответствующих элементов, имеющие значение для рассматриваемой проблемы. Из числа этих классификаций для химического анализа имеет значение старейшее по происхождению деление элементов на металлы и неметаллы. Это деление первоначально основывалось и сейчас еще включает в себя состояние соответственных простых веществ при обычных условиях. В химическом отношении, что важно для аналитической химии, оно выражает тенденцию к образованию, по крайней мере в низших валентных состояниях, катионов (металлы) или анионов (неметаллы), причем речь идет как о простых анионах, так и о сложных (т. е. типа 8 - и МОг)-Для аналитической химии это деление издавна имеет колоссальное значение, так как катионы разделяют посредством ионных реакций с различными анионами (классический сероводородный метод качественного анализа, бессероводородные неорганические схемы анализа катионов), а анионы — соответственно с катионами. В последние десятилетия присоединились ионообменные методы разделения и методы разделения ионов с помощью электролиза. Кроме металлов и неметаллов, часто в последнее время различают еще полуметаллы, или иначе металлоиды (что не следует путать с устаревшим применением термина металлоид как синонима слова неметалл ). К ним относятся элементы, обладающие как в виде простых веществ, так и в соединениях промежуточными свойствами бор, кремний, германий, мышьяк, сурьма, теллур, астат. [c.15]


    Настоящая работа является критическим обзором некоторых свойств, способов получения и очистки таких практически важных соединений кремния, как тетрахлор-силан и трихлорсилан. [c.4]

    Важное значение имеет химическое соединение кремния и углерода — Si (карборунд). Ширина запрещенной зоны 2,86 эв. Поэтому этот полупроводник может быть использован в условиях высоких температур при 500—700° свойства его улучшаются. Отличается уникальным сочетанием механических, термических и химических свойств. При введении примесей элементов V группы (Р, As, Sb, Bi) проявляет электронную проводимость, а примеси элементов II и III групп (Mg, Са, -В, А1, Ga, Jn) сообщают карборунду дырочную проводимость. Донорные примеси сообщают полупроводнику зеленоватый цвет, а акцепторные — сине-черный. [c.458]

    Среди важнейших синтетических материалов, отличающихся весьма ценными свойствами, особое место принадлежит кремний-органическим соединениям. [c.161]

    В результате проведения экскурсий в природу, на местные карьеры, а также и на предприятия строительной промышленности накапливается материал для организации самостоятельной работы на уроках по изучению образцов природных силикатов, природных соединений кальция, важнейших солей натрия и калия в IX классе. В процессе работы с этими образцами обращается внимание как на их физические свойства, так 11 на то, в каких отраслях промышленности они используются. Учащиеся, изучая внешний вид соединений кремния, натрия, кальция, вспоминают и химические реакции, в которые могут вступать данные вещества. Эти вопросы обсуждают в процессе беседы и подводят к выводу о том, какие соединения (из числа местных или из образцов, взятых из готовых коллекций) служат сырьем для получения тех или иных химических продуктов. [c.24]

    Важное значение имеет химическое соединение кремния и углерода— 81С (карборунд). Может быть использован в условиях высоких температур. Отличается уникальным сочетанием механических, термических и химических свойств. [c.434]

    Гетероциклические органические соединения содержат циклы, в которых один или большее число атомов являются элементами, отличными от углерода. Гетероциклы, содержащие в качестве гетероатомов азот, кислород и серу, изучены более подробно, чем циклы с фосфором, бором, оловом и кремнием в качестве гетероатомов. В данной главе внимание будет сосредоточено на рассмотрении химии гетероциклических азот-, кислород- и серусодержащих соединений, из которых основное внимание будет уделено ароматическим гетероциклам, а не их насыщенным аналогам. Химия насыщенных гетероциклов, таких, как окись этилена, тетрагидрофуран,диоксан, пирролидин, пиперидин, лактоны и лактамы, рассматривалась в предыдущих главах в целом свойства таких соединений близки к свойствам их аналогов с открытой цепью с учетом, однако, эффектов напряжения в цикле и конформационных эффектов, связанных с циклической структурой. Разнообразие типов гетероциклических соединений так велико, что делает невозможным сколько-нибудь исчерпывающее рассмотрение поэтому в данной главе будет сделана попытка подчеркнуть принципы, наиболее важные для понимания химических свойств основных гетероциклических систем, имеющих наибольшее практическое значение. [c.367]

    Изучение структурного состояния кремнезема 3102 и его аналогов (ОеОз, фосфатов, арсенатов и других соединений) представляет большой теоретический и практический интерес ввиду исключительного значения двуокиси кремния в силикатной технологии, минералогии и петрографии, электро- и радиотехнике, квантовой электронике и во многих других областях современной техники. Обстоятельному изучению различных свойств (механических, теплофизических, диэлектрических, оптических и др.) полиморфных разновидностей собственно кремнезема посвящено большое количество работ, интенсивно ведущихся уже на протяжении многих десятилетий как в Советском Союзе, так и за рубежом [1—4]. Поэтому в предлагаемом обзоре кремнезем рассматривается лишь конспективно и к тому же в плане модели, тогда как основное внимание уделено систематизации данных о строении и важнейших физико-химических свойствах струк-турно-стехиометрических аналогов кремнезема — соединений типа А В "04 и некоторых двуокисей элементов четвертой группы, образующих в отдельных случаях с кремнеземом твердые растворы различной концентрационной протяженности. [c.162]

    Металлоорганические соединения олова отличаются от металлоорганических соединений кремния и германия рядом важных свойств олово-углеродные связи слабее и более полярны органические группы легче замещаются и перегруппировываются существует большее число реакций в водных растворах сильнее выражена тенденция к образованию комплексных соединений и имеется гораздо большее число соединений, в которых металл двухвалентен. Эти общие положения (которые соответствуют теоретическим соображениям, изложенным в гл. 2) определяют ряд резко отличных свойств, которые также могут быть с успехом использованы. [c.201]


    Кремнеорганические соединения в последнее время приобрели исключительно важное техническое значение. Несмотря на то, что теоретически изучать и синтезировать соединения этого обширнейшего класса химических соединений начали более ста лет тому назад, им долгое время не находили практического применения. И только потребность ряда важнейших отраслей техники в новых материалах, которые сочетали бы в себе ряд свойств органических соединений и силикатных стекол, вызвала интерес к этому классу соединений и стимулировала в наше время синтез большого числа новых типов органических соединений кремния некоторые полимерные кремнеорганические соединения применяются, в частности, в качестве смазочных материалов, работающих при низких и повышенных температурах, другие — в качестве теплостойких лаков, смол для электрической изоляции, химически стойких защитных покрытий и для других технических целей. [c.29]

    Соединения кремния, содержащие силоксановую связь (51 — О), занимают главное место в хим,ии этого элемента. Об огромном практическом и научном значении названных соединений и теоретическом интересе, который они неизменно вызывают, уже не приходится говорить. Литература, посвященная методам синтеза, производству и практическому использованию кислородсодержащих кремнийорганических соединений, чрезвычайно обширна [1—16]. Однако до сих пор еще не появилось монографии, специально посвященной силоксановой связи, ее природе, свойствам и превращениям. Некоторые сведения об особенностях электронного строения и реакционной способности силоксановой связи частично обобщены, в отдельных монографиях и обзорах [2— 23]. Однако проблема силоксановой связи в целом весьма многогранна и полностью далеко еще не охвачена. Кроме того, уже назрело время обсудить результаты многих важных исследований, выполненных за последние годы. [c.3]

    В настоящее время полимерные силиконовые материалы находят широкое применение во всех областях человеческой практики. Их промышленное использование не только послужило толчком к развитию кремнийорганической химии, но и резко расширило фронт и интенсивность теоретических и прикладных исследований в этой области. При этом стали возникать совершенно новые направления исследований свойств кислородсодержащих органических производных кремния и самые неожиданные перспективы их использования. Так, еще 10—15 лет назад существовало мнение, что соединения кремния не играют сколько-нибудь заметной роли в жизнедеятельности растений и животных. Однако сейчас появились многочисленные данные, свидетельствующие о важной биологической роли и физиологической активности ряда кислородсодержащих кремнийорганических соединений и о плодотворном влиянии определенных соединений кремния на живые организмы, включая человека [27, 28]. Наряду с этим биологическая инертность и гидрофобность полиорганилсилоксанов позволили им найти широкое применение в различных областях медицинской практики 27]. [c.9]

    Существенным является выбор компонентов газовой фазы и их термическая стабильность, определяющая однородность и свойства волокна. Изучено большое число карбидообразующих соединений. Чаще всего применяются смеси, состоящие нз соединений кремния и органических соединений. Важно, чтобы при распаде смеси не получался углерод, который, осаждаясь на волокне, снижает его качество. [c.344]

    Было приготовлено очень большое чис. ю соединений актинидов, свойства некоторых наиболее важных соединений сведены в табл. 12. (Здесь также для полноты представлены их кристаллические структуры.) Бинарные соединения с углеродом, азотом, кремнием н серой не включены, несмотря на то что они представляют интерес при использовании ядерной энергии вследствие их устойчивости при высоких температурах. [c.133]

    Наиболее важными из таблицы энергий связей (табл. 75) являются значения энергии связей Э — Э и Э — О. Энергии связей Э — Э коррелируются с тенденцией к образованию связей между атомами одного и того же элемента, заметно убывающей при переходе по группе от С к 5п, тогда как значения для связей Э — О позволяют объяснить высокую термическую устойчивость структур со связями кремний — кислород (силиконы, силикаты). Значения электроотрицательности элементов IV группы по Полингу, как можно видеть в табл. 72, для 51, Ое, 5п и РЬ практически одинаковы. Эти значения не отражают общего характера изменения химических свойств, который обнаруживается для соединений элементов этой группы, а именно повышения основности окислов от кислой СОг [c.267]

    Важнейшими параметрами, определяющими свойства продуктов гидролиза, являются функциональность системы, а также величина соединенных с атомом кремния органических радикалов. [c.555]

    Материалы группы А. Изоляционные лаки, клеи и компаунды на основе феноло-формальдегидных, гли-фталевых и других конденсационных смол давно применяются в электротехнике. В последние годы важное значение в качестве электроизоляционных материалов имеют крем-ний-органические полимеры. Еще в 1935—1939 гг. К. А. Ан-, дриановым с сотрудниками были изучены и синтезированы основные типы кремний-органических полимеров. На основе этих соединений в настоящее время производятся электроизоляционные и жаропрочные лаки, этилсиликат, кремний-органические жидкости и смазки, силиконовый каучук, прессовые и слоистые пластики на основе кремний-органических полимеров. Кремний-органические материалы отличаются высокой теплостойкостью и низкой температурой замерзания. Их физико-химические показатели остаются почти неизменными в широком интервале температур (от минус 60° до плюс 200°). Выпускаемые в настоящее время кремний-органические пластические массы с асбестовыми стеклянными наполнителями обладают ценными свойствами и быстро внедряются в различных отраслях электротехники. Например, кремний-органический асбоволокнит К-41-5, обладающий высокой механической прочностью, является жаростойким электроизоляционным материалом. Из него изготавливаются корпуса и детали приборов, электроарматуры и оборудования, постоянно подвергающиеся в условиях эксплуатации действию температуры от 200 до 300°. Изделия из прессовочного материала К-71 обладают высокой дугостойкостью и устойчивы в условиях тропического климата. Прессовочный порошок КМК-9 является жаростойким электроизоляционным материалом для изготовления деталей электро- и радиотехнических приборов и оборудования. В электропромышленности используются также полиэфирные смолы, например, [c.154]

    Кремний не встречается в природе в свободном состоянии. Важнейшими природными соединениями кремния являются кремнезем или двуокись кремния (З Юг), а также различные силикаты и алюмосиликаты. Природные соединения кремния очень разнообразны по своему виду, строению и свойствам [12—16] важнейшие из них представлены в табл. 1. [c.5]

    При исследовании свойств кремния и углерода, а особенно кремнийорганических и органических соединений, гипотеза о полимерном строении кремнезема и о склонности кислородсодержащих соединений кремния к полимеризации сыграла важную роль. [c.57]

    Важную группу ПАВ на основе кремния представляют соединения с низкомолекулярной трисилоксановой основой. Их получают взаимодействием 2 молей триметилхлорсилана с 1 молем метилдихлорсиланом и последующим присоединением к этоксилату аллилового спирта или с этоксилатом (уравн. 1.57). Данные низкомолекулярные соединения особенно эффективны в качестве смачивающих агентов. Введение пропиленоксида в полиэфирную цепь приводит к существенному увеличению динамических поверхностных свойств. Превращение данных этоксилатов в анионные сульфаты с использованием 50з, С130зН либо серной кислоты невозможно, так как трисилоксаны в отличие от длинноцепных силоксанов чувствительны к гидролизу. Для таких случаев был разработан более длинный путь, включающий образование циклических промежуточных соединений [140]. [c.65]

    КАРБОРУНД (карбид кремния) Si — соединение кремния с углеродом, один из важнейших карбидов, применяемых в технике. В чистом виде К-— бесцветные блестящие кристаллы, технический К. окрашен в зеленый или сине-черный цвет, т. пл. 2830 С. Чистый К.— изолятор, в зависимости от примесей приобретает свойства полупроводника. Химически стоек, на него действуют только смесь азотной и плавиковой кислот, а также фосфорная кислота при 230 С. К. получают в электропечах прн температуре около 2000° С из смеси песка и кокса с примесью Na l и древесных опилок. К. отличается высокой огнестойкостью, теплопроводностью, термостойкостью, сопротивлением к ст1фанню. Из К- изготовляют огнестойкие изделия, футеровку, защитные замазки, нагревательные (силитовые) стержни для электропечей, плиты и покрытия D метро, на вокзалах, абразивные материалы, наждачную бу-Mai-y и многое другое. Кристаллы К. применяют в радиотехнике. [c.121]

    Способность кислородных соединений кремния и алюминия к полимеризации и деполимеризации оказывает большое влияние на процессы получения гидравлических вяжуш,их веществ, на взаимодействие последних с водой, а также на свойства бетонов. Эту важную особенность кислородных соединений кремния и алюминия можно проследить на всех стадиях превращений, происходящих при синтезе п твердении неорганических вяжущих веществ, содержащих эти элементы. [c.205]

    Некоторые интерметаллические соединения, связь в которых заметно ковалентна, обладают полупроводниковыми свойствами. Наиболее важны соединения типа А В (например, GaAs, InSb), которые изоэлектронны с кремнием или германием. Эти соединения кристаллизуются, как правило, в структурном типе цинковой обманки. [c.363]

    Важнейшие области применения галлия. Основная область применения галлия — полупроводниковая техника. Галлий образует с элементами группы азота (кроме висмута) соединения типа А" В , которые изоэлектронны полупроводниковым элементам IV группы — германию и кремнию и обладают полупровониковыми свойствами. По сравнению с германием и кремнием соединения А В обладают большей подвижностью носителей тока. Они способны образовывать друг с другом твердые растворы, что позволяет синтезировать из них полупроводниковые материалы со свойствами, меняющимися в широких диапазонах. [c.245]

    Наиболее устойчивым соединением кремния является двуокись кремния (кремнезем, кремневый ангидрид) 8102. Встречается в природе в виде минерала кварца. Чистый кварц — бесцветные кристаллы с удельным весом 2,65 и температурой плавления 1 710°. Большие прозрачные призматические кристаллы кварца называются горным хрусталем. Разновидностями кварца, окрашенными различными примесями, являются аметист, агат и яшма. Обычный песок представляет собой загрязненный примесями мелкозернистый кварц. Кварц находит важное применение из него изготовляют кварцевое стекло, обладающее рядом весьма ценных свойств. Стекло это изготовляется путем плавления кварца. Расплавленный кварц при охлаждении постепенно загустевает и затем затвердевает в прозрачную стекловидщ ю массу. Кварцевое стекло обладает чрезвычайно незначительным коэфициентом температурного расширения. Поэтому кварцевая посуда может переносить резкие изменения температуры. Накаленное докрасна кварцевое стекло, будучи погружено в холодную воду, не лопается. Это свойства делает кварцевую посуду (например, колбы и пр.) весьма ценной при различных химических работах. Вторым ценным свойством кварцевого стекла является то, что оно почти не задерншвает ультрафиолетовых лучей (обычное оконное стекло, наоборот, почти не пропускает через себя этих лучей), поэтому кварцевое стекло применяется в аппаратах для получения ультрафиолетовых лучей, например, в ртутных кварцевых лампах, которыми широко пользуются и в медицине. Недостатком кварцевого стекла является его чувствительность к щелочам. [c.184]

    Стереохимия. В табл. 19.3 приведены стереохимические свойства соединений IV группы. Для кремния наиболее важна степень окисления, равная четырем, поэто.му соединения кремния почти всегда имеют тетраэдрическую координацию, хотя иногда они и могут быть октаэдрическими. Для других элементов Ое—РЬ относительное значение октаэдрической координации возрастает. Известны также некоторые пятикоординационные соединения, такие как аддукты (СНз)д5пХ, с различными основаниями Льюиса, а [c.311]

    Полидиметилсилоксаны инертны к действию таких ионных реагентов, как водные растворы кислот или оснований. Однако концентрированные кислоты и основания разрушают полимеры по связям кремний — кислород. Перекиси вызывают сшивание цепей вследствие окисления боковых метильных групп ионизирующие излучения также структурируют полимер [120]. Полн-диметилсилоксаны нерастворимы в воде и являются эффективными водоотталкивающими соединениями это свойство, несомненно, в какой-то степени объясняет их высокую стабильность в водных растворах реагентов. Термическая и химическая стабильности полидиметилсилоксанов, безусловно, имеют большое практическое значение, но еще более важно, что эти свойства сочетаются с хорошими электроизоляционными (высокая диэлектрическая прочность и низкий коэффициент потерь) и уникальными реологическими свойства ми. [c.352]

    Соединения бора образованы преимущественно за счет кова-.лентных связей и напоминают по своим свойствам и реакциям аналогичные соединения других неметаллов, особенно кремния. Мономерные соединения бора с тремя ковалентными связями включают 5р2-гибридизацню, приводящую к образованию плоских структур, которые в случае галоидов частично стабилизированы также за счет связывания заполненных ря-орбиталей галогенов с незаполненной р -орбиталью бора. Значение этого я-связыва-ния уменьшается в ряду ВРз>ВСЬ > ВВгз. Дефицит электронов в соединениях ВХз делает их сильными акцепторами электронов, поэтому атом бора может координировать вещества типа аминов, фосфинов, простых эфиров и сульфидов с образованием тетраэдрических комплексов состава 1 1. Наиболее характерна такая координация в случае ВВгз и наименее для ВРз, как и следовало. ожидать для случая, когда разница в я-связывании более важна, чем стерические или электростатические эффекты. [c.314]

    Мтилон-С (привитой сополимер целлюлозы с полистиролом) содержит 70—75% целлюлозы и 25—30% полистирола [245]. Специфической особенностью модифицированного вискозного штапельного волокна этого типа являются повышенные (по сравнению с обычным штапельным волокном) стойкость к действию кислот и гидрофобность [246]. Однако ткани, полученные из волокна мтилон-С или из смеси его с синтетическими волокнами, не обладают кислотоотталкивающими свойствами. Для придания этого практически важного свойства необходимо дополнительно обработать полученные ткани или изделия кремний-органическими соединениями (ГКЖ) или органиче- [c.133]

    В табл. 31-1 приведены основные типы кремнийорганических производных там же приведены соответствующие соединения углерода. Валентность кремния, так же как и углерода, обычно равна четырем кремний образует сравнительно прочные связи с другими атомами кремния, с углеродом, водородом, галогенами, кислородом и азотом. Представление о прочности этих связей по сравнению с соответствующими связями углерода можно составить, ознакомившись со средними энергиями связей, приведенными в табл. 31-2. Важно заметить, что связи 81 — 81 слабее, чем связи С — С, почти на 30 ккалIмоль, тогда как связи 81 — 0 прочнее, чем связи С — О, более чем на 22 ккал1молъ. Это различие в энергиях связей объясняет ряд различий в химических свойствах углерода и кремния. Так, если углерод образует огромное число соединений с линейными и разветвленными цепями С — С-связей, то разнообразие соединений кремния меньше силаны 31 Н2 +2, аналогичные алканам с формулой СпНгп+г относительно неустойчивы [c.465]

    Изучая природные и искусственно полученные соединения кремния, Д. И. Менделеев обратил внимание на особенности свойств ангидрида кремневой кислоты. Еще в 50-х годах прошлого столетия Менделеев выдвинул гипотезу о полимерном строении SIO2 и привел в защиту этой гипотезы ряд доказательств. Эта гипотеза впоследствии получила полное признание, хотя, как указывает Д. И. Менделеев, добиться этого было нелегко. Напомним, что в то время в науке вопрос не только о строении, но и о составе SIO2 был еще предметом самых разноречивых толкований. При исследовании свойств кремния и углерода, особенно кремнийорганических и органических соединений, гипотеза о полимерном состоянии кремнезема и о склонности кислородсодержащих соединений кремния к полимеризации сыграла важную роль. [c.13]

    Алкил- и арилгялпгрясиланы характеризуются ясно выраженными свойствами галогенангидридов. Они отличаются большой подвижностью атомов галогенов, соединенных с атомами кремния. Важнейшей реакцией алкил- и арилгалогенсиланов является реакция их гидролиза, например  [c.160]

    IVA неметаллами являются только углерод и кремний, причем углерод йграет более важную роль. Углерод существует в нескольких формах и со многими элементами образует различные неорганические соединения. Поскольку углерод является основной составной частью всех органических соединений, их свойства и реакции будут рассмотрены в соответствующих главах, посвященных органической и биологической химии. Здесь HI6 рассматриваются различные формы элементарного углерода, окись и двуокись углерода и карбонаты, относящиеся к неорганическим соединениям. [c.166]


Смотреть страницы где упоминается термин Кремний и его важнейшие соединения Кремний и его свойства: [c.148]    [c.238]    [c.134]    [c.475]    [c.412]    [c.19]    [c.412]    [c.108]    [c.288]   
Смотреть главы в:

Кремнийорганические соединения в технике Издание 2 -> Кремний и его важнейшие соединения Кремний и его свойства

Кремнийорганические соединения в технике Изд2 -> Кремний и его важнейшие соединения Кремний и его свойства




ПОИСК





Смотрите так же термины и статьи:

Кремний, свойства



© 2025 chem21.info Реклама на сайте