Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы полярография

    Выделение металлов и реакции восстановления растворенных веществ на катоде, которым является капающая ртуть, лежат в основе полярографии — широко применяемого метода химического анализа (предложен Я. Гейровским в Чехословакии в 1922 г.). Ионизированный пар ртути используют в различных ионных приборах — люминесцентных лампах дневного света, ртутных кварцевых лампах и др. Ряд соединений ртути применяют в полупроводниковых приборах. Широко используются ртутные термометры. [c.600]


    Пропорциональность между предельным током диффузии и концентрацией деполяризатора используют в полярографии для количественного анализа катионов металлов и других веществ, способных электрохимически восстанавливаться на электроде. [c.337]

    В качестве поляризуемого рабочего электрода в полярографии используют ртутный капельный электрод. Он имеет небольшую поверхность и, следовательно, высокую плотность тока при малой силе тока (если пренебречь изменением концентрации пробы в результате электролиза), поэтому он легко поляризуется. При добавлении ртути по каплям (удовлетворительное время капания 3—5 с) в каждый момент образуется идеальная электродная поверхность. Другое преимущество электрода — большое перенапряжение водорода на ртути, что дает возможность в. нейтральном растворе проводить определение даже щелочных металлов. Этот электрод можно применять в области относительно высоких отрицательных потенциалов. Напротив, его положительная граница, измеренная относительно каломельного электрода, находится при -[-0,45 В (из-за анодного растворения ртути). [c.280]

    Иногда для осциллополярографических измерений применяют электрод в виде периодически сменяемой ртутной капли. Для этого устье капилляра закрывают иглой из нержавеющей стали. Игла прикреплена к железной пластинке, над которой расположен электромагнит. Включая электромагнит при помощи реле на определенное время, получают на конце капилляра каплю со строго воспроизводимыми размерами. При измерениях на висячей капле можно существенно уменьшить скорость наложения потенциала, что позволяет повысить чувствительность осциллографической поляро- графии. Кроме того, висячую кап- " лю применяют в так называемой полярографии с накоплением, ко-торая используется для определе- (-Г ния ультрамалых количеств катионов металлов в растворах. Для этого висячей капли подбирают таким образом, чтобы определяемые катионы могли разрядиться с образованием амальгамы, а затем линейно смещают потенциал капли в анодную сторону и измеряют ток анодного растворения амальгамы. Поскольку время предварительного электролиза на висячей капле можно в принципе выбрать сколь угодно большим, то можно накопить на электроде определяемое вещество, концентрация которого в растворе лежит за пределами чувствительности обычного полярографического метода или других его разновидностей. [c.207]

    Чувствительность осциллографической полярографии близка к чувствительности классической и переменноточной полярографии в аналогичных условиях. Для определения ультрамалых количеств катионов металлов в растворах применяют осциллографическую полярографию с накоплением, или инверсионную полярографию. Для этого висячей капли (или какого-нибудь индифферентного электрода) выбирают таким образом, чтобы определяемые катионы могли разрядиться с образованием амальгамы или металлического осадка на поверхности твердого электрода, а затем линейно [c.234]


    Чувствительность осциллографической полярографии близка к чувствительности классической и переменноточной полярографии в аналогичных условиях. Для определения ультрамалых количеств катионов металлов в растворах применяют осциллографическую полярографию с накоплением, или инверсионную полярографию. Для этого Еп висячей капли (или какого-нибудь индифферентного электрода) выбирают таким образом, чтобы определяемые катионы могли разрядиться с образованием амальгамы или металлического осадка на поверхности твердого электрода, а затем линейно смещают потенциал электрода в анодную сторону и измеряют ток анодного растворения определяемого металла. При достаточно большом времени предварительной выдержки можно накопить на электроде определяемое вещество, концентрация которого в растворе лежит за пределами чувствительности обычного полярографического метода. [c.282]

    Полярографический метод, разработанный Я- Гейровским, состоит в том, что раствор исследуемого вещества подвергают электролизу. При этом изучают зависимость силы тока, протекающего через раствор, от величины приложенного напряжения. Исследованию могут подлежать соединения, восстанавливающиеся на катоде (ионы металлов), или вещества, окисляющиеся на аноде (гидрохинон или другие органические вещества). Принципиальная схема полярографа дана на рис. 48. При исследовании соединений, восстанавливающихся на катоде, катодом обычно служит капельный ртутный электрод, представляющий собой ре- зервуар со ртутью, из которого периодически через капилляр капает ртуть. Возможно также применение микроэлектродов из других каких-нибудь металлов (платина и т. п.). На ртути может происходить выделение металла, образующего или не образующего с ней амальгаму. Восстановление металла может идти либо через стадию промежуточного состояния окисления, либо минуя ее. Полярограммы (кривые зависимости силы тока, протекающего через раствор, от величины приложенного к раствору напряжения) в каждом из перечисленных случаев имеют вид, представленный на рис. 49. [c.291]

    В методе амальгамной полярографии большое внимание следует уделять очистке реактивов и воды. Химически чистые реактивы обычно содержат примеси тяжелых металлов — цинка, свинца, меди в количествах, которые препятствуют определению этих элементов при содержании 10 —10" %. Очистить от тяжелых металлов многие легколетучие вещества — воду, кислоты и другие можно перегонкой в кварцевом аппарате. [c.167]

    Полярография с накоплением может быть не только амальгамной. За последнее время быстро развивается так называемая пленочная полярография с накоплением. В качестве индикаторных электродов здесь используются твердые электроды, главным образом графитовый. Определяемые вещества накапливаются на электроде в чистом виде (металлы) или в виде различных соединений, а затем происходит растворение осадка при меняющемся потенциале. [c.168]

    Основной ток переменнотоковой полярографии (пунктирная кривая на рис. 4.28), как указано в предыдущем разделе, в широкой области значений потенциалов является емкостным переменным током, и поэтому кривая переменный ток — потенциал имеет такой же вид, как кривая емкость двойного электрического слоя — потенциал (рис. 4.27). Подъем в конце при положительных и отрицательных значениях потенциала соответствует прежде всего процессам окисления —восстановления (растворение металла электрода или соответственно выделение ионов электролита). Величина пикового тока переменнотоковой полярограммы складывается из емкостного и фарадеевского токов. Оба компонента суммируют как векторы (рис. 4.3). Как и в случае постояннотоковой полярографии, емкостный ток ограничивает чувствительность метода, так что важно знать его. Для чистого емкостного тока (пунктирная кривая на рис. 4.28) имеется следующее выражение  [c.156]

    Метод дифференциальной полярографии в некоторых случаях позволяет анализировать смеси металлов, имеющих близкие по- [c.188]

    В книге рассмотрены основные понятия электрохимии и современные методы исследования кинетики электродных процессов. Описаны классические и релаксационные методики изучения электродной поляризации. Представлены специальные и вспомогательные приборы, применяемые в электрохимических исследованиях. Уделено внимание особенностям лабораторного эксперимента. В задачах установлены закономерности фарадеевских реакций, электропроводности растворов, чисел переноса, э. д, с. элементов, электрокапиллярных явлений и строения двойного электрического слоя, диффузионной кинетики и полярографии, механизма образования на электродах новой фазы, пассивности и коррозии металлов. [c.2]

    Электрохимические процессы имеют большое практическое значение. Так, теоретические законы электрохимии лежат в основе методов получения хлора, щелочей, ряда цветных и редких металлов, они реализуются также в процессах гальванотехники, при работе химических источников тока. В науке и технике широко используются электрохимические методы контроля и анализа потенциометрия, кондуктометрия, полярография, кулонометрия и т. д. [c.115]

    Формамид обладает необычной диэлектрической постоянной (110), существенно превосходящей диэлектрическую постоянную воды. Этот растворитель находится в жидком состоянии в удобной для работы области температур (2,5-193 °С) и имеет низкое давление паров при комнатной температуре. По вязкости он превосходит ДМФ (3,3 сП по сравнению с 0,80 сП для ДМФ). В отличие от ДМФ формамид лишь эпизодически применялся в качестве растворителя электролитов, причем область рабочих потенциалов в формамиде оказалась уже, чем в ДМФ. Более высокая диэлектрическая постоянная вообще не дает особых преимуществ формамиду перед ДМФ, так как диэлектрическая постоянная последнего также достаточно велика, чтобы обеспечить адекватную проводимость растворов. В основном с помощью формамида можно варьировать условия опыта путем изменения определенных свойств растворителя. Формамид - хороший растворитель для различных неорганических соединений, включая хлориды, нитраты и сульфаты ряда переходных и щелочноземельных металлов. Подобно воде, формамид растворяет более полярные органические соединения и смешивается с водой он очень гигроскопичен и легко гидролизуется с образованием уксусной кислоты и аммиака. Формамид использовался и качестве растворителя при полярографии на КРЭ некоторых переходных элементов и ряда органических соединений. [c.21]


    Ацетон - хороший растворитель для многих органических и умеренно хороший для многих неорганических соединений. Его можно использовать при полярографии всех ш,елочных металлов, магния и редкоземельных элементов на КРЭ. Склонность к полимеризации ограничивает его использование в кисло- [c.47]

    Ванадий извлекают из битумов и других остаточных продуктов, обрабатывая их в течение 5 ч при 500 °С смесью 1 М раствора НЫОз, кислородсодержащего газа и полигликоля. В результате такой обработки ванадий переходит в неорганические соединения, растворимые в воде и легко извлекаемые. Для определения небольшого содержания металла в нефти [419] в дополнение к классическим химическим методам применяют колориметрию, спектрофотометрию, эмиссионную спектрометрию, инфракрасную и ультрафиолетовую спектроскопию, рентгеноскопию, дифракцию, масс-спектрометрию, полярографию, амперометрическое титрование, хроматографию, радиоактивный анализ. [c.36]

    Очистка. Около 0,3 кг ртути., загрязненной различными металлами, например при применении в качестве катода или в полярографии, помещают в делительную воронку с притертой пробкой (емк. 2—2>л), приливают 1,5 л азотной кислоты (1 5), нагретой до 50° С, закрывают воронку пробкой и энергично встряхивают. Азотную кислоту сливают и повторяют промывку новой порцией азотной кислоты. Этот процесс повторяют до тех пор, пока поверхность ртути не станет блестящей. Затем ртуть промывают несколько раз водой. [c.319]

    По этой причине дифференциальная импульсная полярография считается самым чувствительным и наиболее эффективным вольт-амперометрическим методом, в особенности при определении следовых количеств металлов, при анализе биологически активных веществ и т.п. В частности, по чувствительности и точности определения свинца и кадмия этот метод сравним с атомно-абсорбционным методом, а при качественных определениях и анализе сложных матриц даже более предпочтителен. [c.355]

    В растворах с высокой проводимостью электролита при протекании обратимых электрохимических реакций переменнотоковая полярография с прямоугольной формой поляризующего напряжения позволяет определять ионы некоторых металлов с концентрацией 5-10 моль/л. В этом отношении метод уступает лишь дифференциальной импульсной полярографии. При необратимом характере электродного процесса нижняя граница определяемых концентраций повышается до 10 моль/л. Однако меньшая чувствительность метода по отношению к необратимо реагирующим деполяризаторам в ряде случаев может оказаться полезным свойством -когда определение микроколичеств обратимо восстанавливающихся веществ проводится в присутствии более высоких концентраций необратимо реагирующих деполяризаторов. [c.364]

    Около 0,3 кг ртути, загрязненной различными металлами, например после применения в качестве катода или в полярографии, помещают в делительную воронку с притертой пробкой вместимостью 2—3 л, приливают 1,5 л разбавлен- [c.80]

    Строение и величина бокового радикала нафтеновых кислот оказывает существенное влияние на их активность. Высокомолекулярные кислоты менее активны по отношению к металлам, чем низкомолекулярные. Поэтому наряду с общим количеством нафтеновых кислот целесообразно оценивать их активность. Наиболее быстрое и точное определение активности и общего коли-чоства карбоксильных групп в нафтеновых кислотах можно проводить методом осциллографической полярографии. [c.55]

    В практикуме по осциллографической полярографии кратко рассматриваются теоретические основы метода вольтамперной осциллополярографии, критерии определения механизмов электродных процессов, аппаратурное оформление метода и взаимосвязь отдельных узлов осциллополярографов. Описана последовательность операций получения и обработки осциллополярограмМ определения ионов металлов и их смесей, анионов, органических веществ, восстанавливающихся, окисляющихся или адсорбирующихся на электроде, определение микроколичеств металлов, приемы обработки экспериментальных данных. [c.208]

    Такого мнения в, тридцатых годах этого столетия придерживались Гош, Дхар и др. В последнее время правильность такой точки зрения подтвердил С. Г. Телетов. Исследуя гидрозоли гидрата окиси железа, он нашел, что различия в коагулирующей способности ацетатов металлов определяются действием сопутствующих ионов, т. е. ионов, одноименно заряженных с частицей Ре(ОН)з-С помош,ью методов полярографии, колориметрии и радиометрии С. Г. Телетов получил данные, свидетельствующие также об адсорбции катионов меди и цинка на положительно заряженных частицах гидратов окисей металлов. [c.299]

    Выполнение работы. 1. Собрать полярограф (см. рис. 43, а и работу 68). Собрать потенциометр для измерения э. д. с. гальванического элемента (см. стр. 140). Собрать электролитическую ячейку. В тщательно вымытый и высушенный трехкамерный Ш-об-разной формы стеклянный сосуд (рис. 44) с диаметром наружных трубок 20—25 мм и внутренней 30—35 мм налить раствор серной кислоты любой моляльности (от 1 до 0,5). Вставить в раствор и жестко закрепить катод 3. Материал катода — один из металлов, указанных в задании. Чтобы уменьщить влияние краевых эффектов электрического -поля, вставить также в раствор две свинцовые или платиновые пластинки — аноды ] н 4. Катоды и аноды вмонтированы в стеклянные трубки. Перед каждым опытом катод и аноды очищать тонкой наждачной бумагой, промыть этанолом, дистиллированной водой и соответствующим раствором. Замерить длину и ширину катода. Вычислить рабочую площадь поверхности катода S. Методику очистки платиновой пластины и приготовление катодов см. в соответствующих работах на стр. 147. Размер пластин 15X10 мм, толщина около 1 мм. [c.210]

    Полярографический анализ требует минимальной предварительной подготовки образца, что предупреждает возможность внесения загрязнений в образец. Полярография может сочетаться, например, с ионообменной хроматографией по методу Кемуля, экстракцией и другими физико-химическими методами анализа. В качестве комплек-сообразователей и маскирующих средств применяют различные органические реагенты. Твердые электроды из благородных металлов в ряде случаев заменяют борокарбидными и графитовыми, которые химически стойки. [c.515]

    Реакции замещения лигандов в координационных соединениях платиновых металлов протекают медленно, что затрудняет концентрирование, выделение и определение благородных металлов, в частности, родия. Все реакции базирующиеся на образовании комплексов и используемые в технологии и аначизе платиновых металлов, протекают во времени и нагревании. В работах [1-3] показана перспективность использования роданида, тиомочевины, цитрата для извлечения платиновых металлов. Из литературы [4,5] известно, что добавление в сульфатные электролиты родия сульфаминовой кислоты стабилизирует раствор, а сульфосалициловая кислота является лигандом -комплексообразователем, способным образовывать с ионами металлов хелатные структуры, устойчивость которых обычно больше, чем монодентатных комплексов [6]. В работе использовапи метод классической, тает- и переменнотоковой полярографии и метод кислотно-основного титрования. [c.89]

    Пропионитрил, СгНзСК, имеет достаточно высокую диэлектрическую постоянную (27), относительно высокое давление паров при комнатной температуре и характеризуется широкой областью температур, в которой находится в жидком состоянии (от -92 до +97 °С). Этот растворитель использовался при полярографии ряда щелочных, щелочноземельных и переходных металлов [1. Пропионитрил очень похож на ацетонитрил, поэтому применяется наряду с ним или вместо него. Однако Пропионитрил обладает лучшими спектрофотометрическими свойствами, что характерно для насыщенных нитрилов. [c.11]

    Фенилацетонитрил, СбПзСПгСК, обладает высокой вязкостью (1,93 сП при 25 °С) и низким давлением паров при комнатной температуре. Находится в жидком состоянии в удобной для работы области температур (от -24 до +233 °С). Диэлектрическая постоянная составляет 18,7, что несколько меньше, чем у других нитрилов с низким молекулярным весом. Этот растворитель использовался при полярографии ряда ионов металла на КРЭ [I]. Однако детальное изучение его свойств с точки зрения использования в электрохимических системах не проводилось. Ионы щелочных и щелочноземельных металлов можно исследовать в этом растворителе полярографическим методом. Но-видимому, фенилацетонитрил нельзя применять для большого числа неорганических соединений. [c.11]

    По многим свойствам изобутиронитрил, (СПз)2СПСК, очень похож на ацетонитрил. Так, оба эти растворителя находятся в жидком состоянии в близких областях температур (от -72 до +104°С), однако диэлектрическая постоянная изобутиронитрила (20) несколько меньше. Он нерастворим в воде и слабо растворяет большинство солей. Токсичен, проникает в тело через дыхательные пути и кожу. По своим оптическим свойствам сходен с ацетонитрилом. Использовался в качестве растворителя при полярографии ряда щелочных, щелочноземельных и переходных металлов на КРЭ [2] и при окислении амидов на платине [I]. Опубликованы [3] сравнительные данные по полярографии неорганических соединений в изобутиронитриле и других нитрилах. Изобутиронитрил является удобным заменителем ацетонитрила, особенно для электродных реакций органических соединений. Перастворимость изобутиронитрила в воде облегчает удаление фонового электролита при образовании нерастворимых в воде реагентов. Реакции, протекающие с участием растворителя, очевидно, аналогичны для обоих нитрилов. Замена одного растворителя другим может помочь при исследовании механизма реакций. [c.12]

    До сих пор бензонитрил преимущественно использовался в электроана-литической химии или электрохимии органических соединений. Это обусловлено наличием примыкающего к нитрилу фенильного кольца и отсутствием альфа-водорода, что выгодно отличает его от других нитрилов. Благодаря этим особенностям бензонитрил является удобным растворителем для обнаружения электролитически генерированных радикалов. Бензонитрил применялся в качестве растворителя при полярографии [1] в нем можно получить полярограммы для активных металлов Ка , Mg , Са , и Ва , но не для и четвертичного аммониевого иона вследствие низкой растворимости соответствующих солей. Бензонитрил использовался также для анодного окисления алифатических аминов [2]. По-видимому, применение этого растворителя, связанное с большими трудностями, не дает каких-либо преимуществ по сравнению с ацетонитрилом. [c.13]

    Морфолин - тетрагидро-1,4-оксазин, С4Н8КО - довольно вязкий основной растворитель с низкой диэлектрической постоянной (7,33). Он растворяет разнообразные соли щелочных, щелочноземельных, редкоземельных и переходных металлов и сам неограниченно растворяется в воде. В качестве растворителя морфолин применялся для полярографического восстановления щелочных, щелочноземельных и некоторых переходных элементов [1,2]. В литературе отсутствуют данные об использовании этого растворителя для полярографии органических соединений. Трудно предположить, что морфолин окажется подходящим растворителем для исследования анодных реакций. [c.26]

    Муравьиная кислота - хороший растворитель для многих неорганических и органических соединений. Она имеет относительно высокую константу автопротолиза (6,3-10 ) и не является сильным комплексообразователем неорганических катионов. Безусловно, она непригодна как растворитель для оснований или таких восстанавливающихся соединений, как иодиды и нитраты. Использовалась при полярографии переходных металлов на КРЭ [1.  [c.35]

    Границы стабильности растворов. Коци и Сиао [2], используя ацетон при полярографии активных металлов на КРЭ, нашли, что в растворах ПТЭА предельный потенциал равен -2,46 В относительно водного ПКЭ. В нашей лаборатории ацетон применялся для окисления на платиновом аноде, причем предельный анодный потенциал в растворе Na 104 оказался равным +1,6 В относительно водного ПКЭ [3.  [c.48]

    С. Г. Телетов. Исследуя гидрозоли гидрата окиси железа, он нашел, что различия в коагулирующей способности ацетатов металлов определяются действием сопутствующих ионов, т. е. ионов, одноименно заряженных с частицей Ре(ОН)з. С помощью методов полярографии, колориметрии и радиометрии С. Г. Телетов получил данные, свидетельствующие также об адсорбции катионов меди и цинка на положительно заряженных частицах гидратов окисей металлов. [c.299]

    В кач-ве индикаторных микроэлектродов используют стационарные и вращающиеся-из металла (ртуть, серебро, золото, платина), углеродных материалов (напр., графит), а также капающие электроды (из ртути, амальгам, галлия Последние представляют собой капилляры, из к-рых по каплям вытекает жидкий металл. В. с использованием капающих электродов, потешщал к-рых меняется медленно и линейно, наз. полярографией (метод предложен Я. Гейровским в 1922). Электродами сравнения служат обычно электроды второго рода, напр, каломельный или хлоросеребряный (см. Электроды сравнения). Кривые зависимости I = f(E) или 1 =/(U) (вольтамперограммы) регистрируют спец. приборами-полярографами разных конструкций. [c.416]

    ПОЛЯРОГРАФИЯ, разновидность вольтамперометрии с использованием индикаторного микроэлектрода из жидкого металла, пов-сть к-рого периодически или непрерывно обновляется. При этом не происходит длительного накопления продуктов электролиза на пов-сти раздела электрод-раствор в электролитич. ячейке. Индикаторным электродом в П. служит чаще всего ртутный капающий электрод. Используют также капающие электроды из жидких амальгам и расплавов, струйчатые электроды из жидких металлов, многокапельные электроды, в к-рьгх жидкий металл или расплав продавливают через диски из пористого стекла, и др. [c.68]

    В классической полярографии индикаторным электродом является ртутный капающий микроэлектрод. Ртутная капля образуется на конце стеклянного капилляра (длиной 10-20 см, внутренним диаметром 0,05 мм), соединенного гибкой трубкой с резервуаром со ртутью. Ртутные капли имеют воспроизводимый диаметр и время жизии от 2 до 6 с. Время жизни капли зависит от высоты столба ртути над капилляром, т. е. гидростатического давления ртути. Иногда используют механический молоточек, контролирующий время жизни капель. Ртутный капающий электрод обладает следующими преимущества-вли 1) постоянное обновление поверхности электрода предотвращает загрязнение поверхности электрода, что выражается в высокой воспроизводимости зависимостей ток — потенциал 2) перенапряжение водорода на ртути в водных раствору велико, позтоко можно изучать процессы восстановления элек-троактивных веществ с более отрицательными потенциалами, чем обратимый потенциал разряда ионов водорода. В кислом растворе, например, 0,1 М H l вьаделение газообразного водорода наблюдается при потенциалах отрицательнее —1,2 В 3) ртуть образует амальгамы со многими металлами, понижая их потенциал восстановления. [c.413]

    Методами классической и переменнотоковой полярографии иэу-чено поведение натрия и других щелочных металлов на фоне 0,1 М (СНд)4К0Н в присутствии нитрилотриуксусной кислоты, ЭДТА, циклогексан-диамин-К,К,К,К-тетрауксусной кислоты (ЦДТА) и урамилдиуксусной кислоты [53]. В присутствии всех указанных лигандов восстановление натрия протекает обратимо, волна имеет диффузионный характер. Установлено, что образуются комплексы 1 1. Наиболее прочные комплексы образует ЦДТА, для натрия [c.92]


Смотреть страницы где упоминается термин Металлы полярография: [c.504]    [c.504]    [c.220]    [c.501]    [c.44]    [c.114]    [c.14]    [c.91]   
Аналитическая химия. Кн.2 (1990) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Определение рассеянных металлов в пыли производственных помещений методом полярографии

Полярограф

Полярография

Полярография комплексов металлов



© 2025 chem21.info Реклама на сайте