Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катиониты неорганические

    В таблицах приведены схемы анализа смеси неорганических веществ, основанные на последовательном выделении групп катионов и аниопов действием групповых реакти BOQ, Перед систематическим анализом обычно проводят предварительное испытание анализируемого вещества дробными реакциями, что позволяет выбрать ту или иную схему. [c.30]


    В. Растворение щелочных металлов в органических растворителях. Соли,содержащие анионы щелочных металлов. Подобно краун-эфирам, криптанды могут быть использованы в синтезах с участием неорганических солей, так как криптаты, образующиеся в результате связывания катионов неорганических солей, растворимы даже в малополярных органических растворителях. [c.178]

    Полярные протонные растворители легко сольватируют как анионы, так и катионы. Неорганические катионы взаимодействуют со свободными электронными парами, тогда как анионы сольватируются путем образования водородных связей. Крупные четвертичные аммониевые ионы не сольватируются [37] или по крайней мере сольватируются не специфично, т. е. сильного непосредственного взаимодействия с растворителем не существует. В этих растворителях имеет место высокая степень диссоциации на свободные сольватированные ионы. Однако многие анионы обладают относительно низкой реакционноспособностью (нуклеофильностью) из-за сильного экранирования сольватной оболочкой. [c.18]

    Определение катионов неорганических веществ [c.141]

    Сола многоосновных органических кислот с неорганическими катионами (цитраты, сукци-наты, тартраты и др.) [c.431]

    Комплекс нерастворим в водных растворах солей и органических растворителях. В этом случае выделение соли полисахарида с неорганическим катионом проводят в органическом растворителе. Осадок комплекса измельчают и встряхивают в течение нескольких часов с насыщенным раствором неорганического электролита в спирте при слабом нагревании. Нерастворимый полисахарид отделяют центрифугированием. К осадку приливают свежий спиртовой раствор электролита и снова встряхивают. Такой обмен проводят еще несколько раз. Осадок отделяют, промывают несколько раз спиртом для удаления неорганической соли. В результате получается соль полисахарида с катионом неорганического электролита. [c.45]

    Всем прокариотным организмам необходимы металлы, которые могут использоваться в форме катионов неорганических солей. Некоторые из них (магний, кальций, калий, железо) нужны в достаточно высоких концентрациях, потребность в других (цинк, марганец, натрий, молибден, медь, ванадий, никель, кобальт) невелика. Роль перечисленных выще металлов определяется тем, что они входят в состав основных клеточных метаболитов и, таким образом, участвуют в осуществлении жизненно важных функций организма. [c.86]

    Практический вывод из этих фактов состоит в том, что для катионов средних размеров гидросульфаты являются не только хорошим исходным материалом для приготовления многих -ониевых солей, но также и очень полезными МФ-катализато-рами. Добавление 1 мол. экв. гидроксида натрия превратит анион гидросульфата в нейтральный сульфат, который не может мешать, так как он экстрагируется труднее почти всех других органических и неорганических анионов. Кроме гидросульфата удобно использовать хлориды. Более гидрофильные четвертичные аммониевые соли с такими анионами, как ацетат, фторид или гидроксид, трудно приготовить они сильно гигроскопичны и/или нестабильны. [c.32]


    Идентификация катионов неорганических веществ. Методы качественного анализа базируются на ионных реакциях, которые позволяют идентифицировать элементы в форме тех или иных ионов. В ходе реакций образуются труднорастворимые соединения (см. 8.6), окрашенные комплексные соединения (см. 3.3 и 8.6), происходит окисление или восстановление (см. 9.1) с изменением цвета раствора. [c.502]

    Люминесцентные реакции можно проводить даже с веществами, не обладающими люминесцентной способностью. В этих случаях реакцию осуществляют таким путем, чтобы после ее завершения исследуемое вещество образовало соединение, обладающее люминесцентными свойствами. Например, большинство катионов неорганических солей в растворе не обнаруживает свечения. Добавление к ним некоторых органических веществ приводит к образованию новых соединений, дающих яркое и характерное свечение, по которому легко установить присутствие искомых катионов. [c.447]

    Наиболее перспективными флокулянтами являются N-заме-щенные полиакриламиды — катионные флокулянты. Выбор последних продиктован относительной легкостью их получения, высокой эффективностью, универсальностью, отсутствием коррозионного воздействия и низкой токсичностью [252]. Внедрение катионных флокулянтов сведет к минимуму или вообще исключит расход неорганических коагулянтов, что, в свою очередь, исключит необходимость применения подщелачивающих реагентов, сократит содержание в очищенной воде минеральных солей и позволит использовать ее без дополнительной обработки в водооборотных системах [253].  [c.263]

    Эти факты показывают, что вопрос о природе антагонизма еще далек от своего окончательного разрешения. Успеху работ в этой области будет способствовать углубленное изучение влияния, оказываемого анионами и катионами неорганических солей на физико-химические свойства протоплазмы. Решение этой задачи сильно затрудняется из-за непостоянства свойств протоплазмы. [c.442]

    Предварительная биологическая обработка очищаемой жидкости в рассматриваемом примере необходима, поскольку при удалении из жидкости растворенных веществ неорганического происхождения, а именно катионов Са +, Ыа+ и др., а [c.63]

    Для комплексонометрического определения четвертичных аминов Будешинский и др. [3—5] на примере бромистого тетрабутиламмония рекомендуют осаждение органического катиона неорганическим анионом (Сси4)2 (с последующим комплексонометрическим определением избытка кадмия), а для третичных аминов аналогичный метод [2] с применением неорганического аниона (6 4) . Нами была проведена разработка комплексонометрической методики определения содержания основного вещества в йодистом тетрабутиламмонии. [c.207]

    Устойчивость водонефтяных эмульсий, образующихся в процессе добычи нефти, в значительной степени зависит от свойств и состава сопутствующей нефти пластовой воды. Степень минерализации пластовой воды, ее кислотность влияют на глубину обезвоживания и обессоливания нефти, а также на эффективность действия деэмульгаторов. Пластовые воды многочисленных месторождений нашей страны различны как по концентрации, так и по составу растворенных в ней неорганических солей. В широких пределах изменяется содержание и соотношение катионов и анионов, а также pH воды. [c.7]

    Цеолитные катализаторы в различных поливалентных катионных (или декатионированных) формах используют для проведения реакций органического и неорганического цикла крекинг, гидрокрекинг, изомеризация, алкилирование, гидрирование, дегидрирование, окисление и т. д. [209—214]. В некоторых случаях они проявляют высокую активность без добавок промоторов, а в других— при нанесении на них активных компонентов. Цеолитные катализаторы термически стабильны, устойчивы по отношению к таким контактным ядам, как сернистые и азотсодержащие соединения, металлы, не вызывают коррозии аппаратуры. Развитая поверхность (до 800 м /г), способность к катионообмену и высокая механическая прочность цеолитов позволяют использовать их в качестве носителей каталитически активной массы.  [c.171]

    Очень сильное влияние на упорядочивающее воздействие поверхности глинистых минералов на воду оказывает состав обменных катионов. Это объясняется прежде всего прочностью связи катионов с поверхностью глинистой частицы, т. е. способностью их к диссоциации и участию в катионообменных реакциях. Степень поверхностной диссоциации (т. е. поверхностного растворения) глинистых минералов, замещенных одновалентными катионами, на один-два порядка выше степени диссоциации глин, обменный комплекс которых насыщен двухвалентными катионами. При прочих равных обстоятельствах степень поверхностной диссоциации зависит не только от плотности заряда обменного катиона, но и от взаимного влияния силовых полей поверхности частицы и катиона друг на друга при взаимодействии с водой. По мере увлажнения поверхности глин вокруг обменных катионов развиваются области с упорядоченными молекулами воды. Часть слабо связанных с поверхностью катионов удаляется от нее и может участвовать в трансляционном движении вместе с молекулами воды и растворенными в ней органическими и неорганическими веществами. Если в дисперсионной среде находятся крупные гидратированные катионы (Ма+, Mg2+), то они, вытеснив с поверхности глинистого минерала менее гидратированные катионы (К+, Са ), могут привести к увеличению гидратной оболочки глинистых частиц. В натриевом бентоните по мере возрастания содержания воды и уменьшения концентрацни суспензии отдельные слои глинистых частичек полностью диссоциируют. В бентоните, обменный комплекс которого насыщен магнием или кальцием, этого не произойдет, хотя ионный радиус этих катионов в гидратированном состоянии почти в два раза превышает радиус гидратированного натрия. Это, видимо, является следствием как изменения структуры воды и размеров гидратированных катионов вблизи поверхности в зависимости от их химического сродства, так и сжатия диффузной части двойного электрического слоя. [c.70]


    Важнейшие органические и неорганические реактивы для определения катионов, анионов, функциональных групп и отдельных соединений, Госхимиздат, 1959, 56 стр. [c.119]

    Зависимость некоторых катионов от природы аниона . Системы для хроматографического разделения смесей ионов. . Окраска зон неорганических катионов при проявлении некоторыми [c.5]

    Окраска зон неорганических катионов при проявлении не оторыми реактивами [c.132]

    Соли одноосновных органических кислот с неорганическими катионами (ацетаты, бензоаты, лактаты и др.) [c.430]

    Форма электрокапиллярной кривой и потенциал нулевого заряда зависят от присутствия в растворе поверхностно-активных молекул, неорганических и органических анионов или катионов. [c.304]

    Если головка нити приближается к другой, старой нити, то она достигает области пленки, которая, вследствие участия в процессе образования этой старой нити, обеднена органическими и неорганическими анионами, необходимыми для создания в головке большой концентрации солей двухвалентного железа. Обеднена она и катионами, необходимыми для достижения высоких значений pH на периферии головки. Это препятствует дальнейшему росту нити по направлению к старой нити. Но, по-видимому, еще существеннее, что уже накопленные и вновь образующиеся ионы ОН , а также еще более интенсивное снабжение кислородом гарантирует, что тело старой нити остается катодом и способствует тому, что приближающаяся анодно заряженная головка меняет направление движения. Если в результате отслоения пленки из головки нити удаляется электролит, то при подходе головки к телу старой нити рост нити прекращается. Это действительно иногда наблюдается на практике. [c.259]

    Иониты классифицируют по происхождению на природные и синтетические по составу — на неорганические и органические по знаку заряда обменивающихся ионов — на катиониты, аниониты и амфолиты (последние в зависимости от условий могут обмениваться как катионами, так и анионами). [c.164]

    Для всех этих минералов часть формулы, заключенная в квадратные скобки, описывает состав слоев урановых слюд, между которыми размещаются молекулы воды и обменивающиеся катионы. Из табл. 59 видно, что плотность размещения катионов между слоями дочти такая же, как в мусковите, биотите, лепидолите или циннвальдите. Расположенные между, слоями катионы способны к обмену они могут быть введены нейтрализацией оксониевого иона в такой форме, как Н(Н20)4[и0аР04] Катионы неорганических солей могут обмениваться с алкиламмониевыми ионами, которые затем, вероятно, ориентируются вертикально или почти вертикально между слоями [и0аХ04]. Возможен также прямой синтез этих алкиламмониевых урановых слюд [280]. [c.316]

    Реакция, проводимая при низких температурах (50° С) в различных растворителях (пентан, циклогексан, бензол, диэтиловый или диизопропиловый эфир), протекает очень медленно (в течение нескольких дней) и является гетерогенной, поскольку катализатор нерастворим в средах с низкой диэлектрической проницаемостью. Скорость реакции, молекулярный вес и структура полимера сильно зависят от катализатора и растворителя и от присутствующих иногда в системе неорганических солей (Na l, NaBr). Например, очень эффективный комплекс, известный как алфиновый катализатор [222], получаемый из амилнатрия, пропена и изопропанола в присутствии Na l, можно представить как твердую решетку катионов Na" с анионами [c.107]

    Сильнокислотный ка-тионообменник Сульфированный полистирол 1—14 Разделение катионов, неорганических соединений, лантаноидов, витаминов Б, пептидов, аминокислот [c.433]

    Такие комплексы образуют гуминовые кислоты [5] и карагенан [6]. В этом случае QN обменивают на неорганический катион в органическом растворителе. Тонко измельченный осадок комплекса встряхивают в течение нескольких часов с насыщенным раствором неорганического электролита в спирте, лучше при небольшом нагревании. Нерастворимый полисахарид отделяют центрифугированием маточный раствор отбрасывают и заменяют свежим спиртовым раствором электролита. Ионный обмен проводят еще несколько часов, после чего он практически заканчивается. Осадок промывают несколько раз спиртом для удаления неорганической соли. В результате получают соль полисахарида с катионом неорганического электролита. [c.290]

    Обычные неорганические соли натрия и калия не растворимы в неполярных органических растворителях. Это верно и для солей неорганических анионов с небольщими органическими катионами, например для тетраметиламмония. Подобные аммонийные соли часто способны, однако, растворяться в ди-хлорметане и хлороформе. Более того, использование относительно больщих органических анионов может обеспечивать растворимость солей щелочных металлов в таких растворителях, как бензол. Например, диэтил-н-бутилмалонат натрия дает 0,14 М раствор в бензоле, для которого понижение точки замерзания неизмеримо мало, что говорит о высокой степени ассоциации. Подобным образом большие ониевые катионы (например, тетра-м-гексиламмония) делают растворимыми соли даже небольших органофобных анионов (например, гидроксид-ионов) в углеводородах. Ионофоры, т. е. молекулы, состоящие из ионов в кристаллической решетке, диссоциируют (полностью или частично) на сольватированные катионы и анионы в растворителях с высокими диэлектрическими проницаемостями. Подобные растворы в воде являются хорошими проводниками. В менее полярных растворителях даже сильные электролиты могут растворяться с образованием растворов с низкой электропроводностью это означает, что только часть растворенной соли диссоциирована на свободные ионы. Чтобы объяснить такое поведение растворов, Бьеррум выдвинул в 1926 г. гипотезу ионных пар. Впоследствии его гипотеза была усовершенствована Фуоссом [38] и рядом других исследователей. Ионные пары представляют собой ассоциаты противоположно заряженных ионов и являются нейтральными частицами. Стабильность ионных пар обеспечивается в основном кулоновскими силами, но иногда этому способствует и сильное взаимодействие с ок- [c.16]

    Хотя многие авторы проводят сравнение характеристик нескольких катализаторов, использованных ими в реакции, этп оценки не пригодны для обобщений, так -как они получены в различных условиях. Необходимо подчеркнуть, что даже в параллельных экспериментах сравнение результатов 1может быть ошибочным, если меняются концентрации катиона катализатора и неорганического катиона [10]. [c.68]

    Внутри указанных подклассов анионных и катионных реагентов имеется разделение по химической структуре. Среди фосфорпроизводных реагентов — неорганические полифосфаты и фосфорорганические соединения, которые входят в эфиры фосфорной кислоты, фосфаты, аминофосфаты. [c.241]

    Большинство неорганических соединений можно условно рассматривать состоящими из электроположительных частей (катионов) и электроотрицательных частей (анионов). Если в соединении имеется две (или более) одинаковых по типу заряда части, то возникает проблема их взаимного расположения в формуле. Порядок, в котором должны располагаться электроположительные части, может быть основан только на последовательности элементов в длиннопериодном варианте Периодической системы так, правильным является расположение KNaS04 и Na (NN4)012, а не NaKS04 и (NH4)Na l2. Расположение электроотрицательных частей должно подчиняться практическому ряду неметаллов например, правильным будет расположение P(I) l2 и Bi( l)0, а не РСЬ и Bi(0) l. [c.11]

    В состав всех углей обязательно входит неорганическая, золообразующая часть, которая тонко или дискретно распределена в органической части угля. Она обычно представлена такими минеральными включениями, как силикаты, кварц, карбонаты и др. В углях низких стадий метаморфизма значительная доля неорганических компонентов присутствует в виде катионов натрия, кальция, магния, железа, алюминия, ассоциированных с карбоновыми кислотами. Неорганическая часть углей отличается также многообразием микроэлементов из обнаруженных 84 элементов периодической системы большая часть присутствует в количествах, не превышающих 0,01% (масс.) [65]. [c.64]

    Смазки классифицируют по составу и назначению. Поскольку определяющее влияние-на структуру и свойства смазок оказывают загустители, то тип загустителя положен в основу классификации смазок по составу. По типу загустителя смазки подразделяют на мыльные, углеводородные и смазки на неорганических загустителях. Мыльные смазки, в свою очередь, в зависимости от состава загустителя делятся на обычные мыльные смазки, смазки на комплексных (в состав загустителя входят соли низко- и высоко-мoJJ кyляpныx кислот) и смешанных (в состав загустителя входят соли различных металлов) мыльных загустителях. По типу катиона молекулы мыла смазки делят на кальциевые, натриевые, литиевые, бариевые, алюминиевые и т. п. В зависимости от состава жиров выделяют смазки на синтетических (фракции СЖК, получаемые окислением парафинов) и на природных (как правило, смеси гидрированных растительных и животных) жирах, а также на технических жирных кислотах (стеариновой, 12-оксистеарино-вой и т. п.). [c.357]

    Обобщая вышеизложенные сведения о трансформащ1и буровых реагентов, нефтешламов, нефти и нефтепродуктов в почве и воде, следует еще раз подчеркнуть, что это сложный процесс, на который оказывают влияние особенности гранулометрического состава почв, содержание органического вещества и обменных катионов, а также химический состав нефти и ее свойства. Большое значение также имеет характер их распространения в среде, включая процессы испарения и конденсации, диффузии, адсорбции и десорбции, биодеградации под воздействием микроорганизмов и различные реакции абиотического расщепления. При этом важно также учитывать физико-химические характеристики растворимость углеводородов, точку кипения, давление паров и др., а также условия, при когорых протекает биологическое окисление загрязнителей, адсорбированных частичками почвы, роль органических и неорганических почвенных коллоидов и т. д. Необходимо принимать во внимание и характер миграционных процессов, которые, с одной стороны, приводят к широкому распространению загрязнения за пределы исходного района за счет горизонтальной миграции низко- и среднемолекулярных углеводородов, а с другой - приводят к концентрации в зоне загрязнения высокомолекулярных компонентов нефти и буровых реагентов в верхних слоях почвы. [c.190]

    Как было отмечено ранее (глава 1.1), хлориды металлов, а по мнению некоторых авторов — катионы металлов вообще, оказывают каталитическое воздействие на процёсс разложения НСЮ. При разработке процесса получения хлоргидринов в неводных средах было интересно выяснить влияние некоторых примесей как неорганического, так и органического характера на скорость разложения НСЮ в среде органического растворителя, в частности в среде МЭК. Кроме того, необходимо было проанализировать влияние неорга1шческих добавок в водно-солевом растворе при совместном их присутствии с высококонцентрированным хлоридом натрия.. [c.71]


Смотреть страницы где упоминается термин Катиониты неорганические: [c.29]    [c.280]    [c.608]    [c.39]    [c.19]    [c.278]    [c.41]    [c.11]    [c.73]    [c.68]    [c.85]    [c.70]   
Ионообменная технология (1959) -- [ c.10 ]

Ионообменная технология (1959) -- [ c.10 ]




ПОИСК





Смотрите так же термины и статьи:

Андреева И.Ю. (Ленинградский ун-т). Изучение взаимодействия рада неорганических ионов с катионными поверхностно-активными веществами

Белинская, Е. А. Матерова, А. И. Зуб. Мембранные электроды из некоторых неорганических катионитов в растворах 1, 1-зарядных электролитов

Катионы неорганических веществ

Катионы неорганических кислот

Косвенные комплексонометрические методы определения анионов неорганических кислот и катионов

Методы, основанные на осаждении или различной растворимости комплексов и солей неорганических катионов

Окраска зон неорганических катионов при проявлении некоторыми реактивами

Определение катионов неорганических веществ

ПОЛЯРОГРАФИЯ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ Катионы элементов первой группы

Сорбция на катионитах и неорганических сорбентах

Факторы, определяющие выбор осадителей для неорганических катионов

Шуберт. Применение ионного обмена для разделения неорганических катионов

Экстракционные методы отделения в виде ионных ассоциатов с неорганическими катионами



© 2025 chem21.info Реклама на сайте