Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коферменты переноса групп

    Биохимическое переаминирование — важнейшая реакция переноса группы в аминокислотном обмене. Она катализируется аминотрансферазами (трансаминазами), коферментом является пиридоксальфосфат, который принимает участие в обмене аминогрупп, образуя шиффовы основания в качестве промежуточной ступени. [c.70]

    Ферменты часто катализируют перенос групп атомов с субстрата на продукт. Функция кофермента при этом заключается в приеме группы с субстрата, обычно путем образования кова- [c.602]


    Несвязанные моно- и динуклеотиды, выполняющие функции коферментов. В живых организмах находятся также свободные нуклеотиды, не связанные в виде макромолекулярных нуклеиновых кислот и выполняющие важные каталитические функции. К ним относятся коферменты реакций переноса фосфатных остатков, переноса ацетильных остатков, переноса водорода и другие. Опишем несколько наиболее важных коферментов этой группы. [c.779]

    АТР как кофермент для активации метаболитов. Многие промежуточные соединения нуждаются в активации путем переноса групп. При этом возможны три способа расщепления АТР  [c.223]

    Первый — кофермент переноса фосфатных групп у всех живых организмов. Это вещество — важнейший аккумулятор химической энергии, которая освобождается в процессах клеточного обмена в реакциях окислительного расщепления веществ. Второй — участвует в разнообразных превращениях такого типа как [c.66]

Таблица 2-2. Некоторые коферменты, принимающие участие в реакциях переноса химических групп Кофермент Переносимая группа Таблица 2-2. Некоторые коферменты, принимающие участие в <a href="/info/1548504">реакциях переноса химических</a> <a href="/info/629329">групп Кофермент</a> Переносимая группа
    Многие ферменты оказывают каталитическое действие на субстраты только в присутствии специфического термостабильного низкомолекулярного органического соединения—кофермента. В таких случаях холофермент (каталитически активный комплекс) состоит из апофермента (белковая часть) и связанного с ним кофермента. Кофермент может быть связан с апоферментом ковалентными или нековалентными связями. Термин простетическая группа относится к ковалентно связанному кофер-менту. К числу реакций, требующих присутствия ко-ферментов, относятся окислительно-восстановительные реакции, реакции переноса групп и изомеризации, а также реакции конденсации (по системе 1иВ это классы 1, 2, 5 и 6). Реакции расщепления, например гидролитические реакции, катализируемые пищеварительными ферментами, протекают в отсутствие кофермента (по системе ШВ это классы 3 и 4). [c.65]

    Трансферазы переносят группы атомов с помощью специфических переносчиков, которые действуют как коферменты. Они играют роль в биохимических превращениях и могут переносить метильные, карбоксильные амино-, сульфо-, формильные (СО или фосфорильные группы (табл. 4.5)  [c.142]


    Интересны биологические системы, включающие кобальт. Наиболее изучен в этом ряду кофермент — витамин В12. В состав его входит коррин, аналог порфирина. Кофермент В12 в организме выполняет ряд функций участвует в переносе СНз-группы (мети- [c.573]

    Последний фрагмент является активной частью кофермента, так как его тиольная группа легко образует тиоэфирные связи с карбоксильными остатками кислот и переносит их на другие субстраты (например, ацетильную группу передает в цикл три-карбоновых кислот - цикл Кребса). КоА участвует в углеводном и жировом обмене и в синтезе важных биомолекул. [c.168]

    В природе распространены системы, в которых небелковый кофер-мент обеспечивает протекание реакции переноса группы (ацильной, оксиметильной, формильной, метильной и др.) один из ферментов переносит группу от первого субстрата к коферменту, а другой — от кофермента ко второму субстрату. Наибольшее биологическое значение имеют, по-видимому, реакции трансфосфорилирования, которые обеспечивают передачу энергии от одного процесса к другому. Переносчиками фосфатной группы служат различные нуклеотиды и нуклеози ды, например аденозиндифосфат (АДФ)  [c.16]

    В клеточных биопроцессах очень важную роль играет еще один аденозинфосфат - кофермент А (КоА, или СоА-5Н, 304) Буква А означает основную функцию этого кофермента - перенос ацильных групп. КоА состоит из аденина, связанного с 3 -фосфо-О-рибозой р-Ы-гликозидной связью. Остаток рибозы содержит при С-5 пирофосфатную фуппу, связанную через пантотеновую кислоту с меркаптоэтиламином  [c.168]

    Стадия трансацилирования (транспептидации) является также последней стадией в синтезе пептидогликанов бактериальных клеточных стенок. Аминогруппа диаминокислоты (рис. 5-9) одной пептидной цепи атакует амидную связь соседней цепи. При этом происходит замещение молекулы D-аланина и образуется поперечная связь (дополнение 7-Г). Ацильные группы, особенно ацетильные, часто переносятся на вуклео-фильные центры тиоэфиров кофермента А (гл. 8, разд. Б).Примером может служить образование ацетилхолина (дополнение 7-Б) из холина и ацетил-СоА в процессе реакции трансацетилирования. Заметим, что присущая тиоэфирам высокая эффективность переноса групп обеспечивает полноту протекания реакций. [c.116]

    Первым открытым нуклеотидным коферментом был никотин-амидадениндинуклеотид (NAD+, 10), который был обнаружен в начале XX века Харденом и Янчом как температурно-стабильный кофактор спиртовой ферментации. Вслед за развитием метода радиоактивных меток и техникой мягкого выделения (например, ионообменная хроматография) были обнаружены многие другие коферменты [7]. Они принимают участие в биологических реакциях окисления-восстановления, переноса групп, в реакциях синтеза полимеров. Эти коферменты будут обсуждены в настоящей главе более детально позднее. Другие же важные встречающиеся в природе эфиры фосфорной кислоты, такие как составляющие клеточных мембран (фосфолипиды и техоевые кислоты) или участвующие в биосинтезе природных соединений (таких, как терпены или стероиды) здесь обсуждаться не будут, но будут рассмотрены в других главах, посвященных природным продуктам. [c.134]

    В биохимических реакциях переноса групп принимают участие и другие коферменты — кофермент А рЗ) [И], пиридоксальфос- [c.137]

    Во мно1 их случаях кофермент можно отделить от белка-фермента. Таким образом, коферменты можно иногда рассматривать в качестве особой формы косубстрата ферментативной реакции. Коферменты обычно функционируют в качестве акцепторов или доноров функциональных групп или атомов и часто связывают два фермента друг с другом с образованием ферментной системы [1]. В этом случае один фермент переносит группу или атом с субстрата на кофермент, а второй — с кофермента на второй субстрат. В настоящее время в большинстве случаев возможно объяснение процесса переноса в терминах механизмов органических реакций. [c.580]

    Многим ферментам, катализирующим широкий спектр биохимических реакций, необходимо для эффективного осуществления каталитической функции присутствие небольшой небелковой простетической группы, более пли меиее прочно связанной с белком. Если эта небелковая группа обслуживает два (или более) фермента, благодаря чему между ними может происходить перенос групп, то ее обычно называют коферментом. В ферментативной реакции различия между субстратом и коферментом не всегда ясны, так как кофермент, подобно субстрату, может в ходе реакции претерпевать структурные изменения. Однако при последующих реакциях первоначальная структура кофермента обычно восстанавливается, тогда как субстрат подвергается дальнейшим химическим превращениям. В тех случаях, когда кофермент на определенной стадии реакции оказывается структурно измененным, различие мегкду коферментом и субстратом выявляется именно иа основании этой конечной регенерации структуры. Кроме того, при многих кофермент-зависимых реакциях субстрат-ферментному взаимодействию обя- зательно предшествует связывание кофермента с ферментом (см. гл. VI). [c.208]


    В этой главе рассматриваются наиболее важные коферменты. Основное внимание уделяется при этом выявлению типа (или типов) соответствующих ферментативных реакций с точки зрения механизмов этих реакций. Более подробное рассмотр.ение коферментов, о которых мы будем говорить ниже (а также и некоторых других), молено найти в руководстве The Enzymes т. 2 и 3). Материал, приводимый в этой главе, дополняет то, что было сказано выше о механизме действия ферментов (см. гл. VII), и вместе с тем служит введением к излон ению проблем промежуточного обмена. Большинство коферментов играет роль промежуточных переносчиков в реакциях переноса групп. [c.208]

    Эти коферменты переносят алкилфосфатпую группу на различные акцепторы. Например, ЦДФ-холин реагирует с а,р-глпцеридами, в результате чего образуются лецитин и ЦМФ  [c.215]

    Ф. образуют большую группу ферментов, присутствующих во всех живых клетках. Катализируемые Ф. реакции фосфорилирования углеводов, спиртов, аминоспиртов, аминокислот, нуклеозидов и др. соединений играют важную роль в обмене углеводов, белков, липидов и нуклеиновых кислот, а также в синтезе нек-рых коферментов. Другая группа Ф., осуществляющих перенос макроэргич. фосфата между богатыми энергией фосфорилированными соединениями (ацил-, енол- и амидинфосфатами), играет важную роль в процессах образования и накопления энергии в живых тканях в форме АТФ. [c.241]

    В первой реакции, катализируемой ферментом происходит перенос остатка В с донора О на Кофермент, акцентировавший группу В, отделяется от фермента Ф , и в реакции, катализируемой ферментом Ф2, передает группу И акцептору А. В этом случае в известном смысле стирается грань между К. и субстратом в каждой отдельной реакции К. выступает как субстрат, подвергающхмся тому или иному превращению. Только по отношению к системе в целом он оказывается истинным катализатором, поскольку после каждого оборота цикла он принимает исходную форму и в процессе суммарной реакции не расходуется. [c.371]

    Основная группа этих биологически важных соединений, а именно сложные эфиры, содержащие макроэргическую фосфатную группировку Р—О—Р, являются производными нуклеотидов. В молекулы этих производных, и в частности веществ природного происхождения, в качестве одного из компонентов ангидридных структур всегда входит нуклеозид-5 -фосфат. Другим компонентом ангидридных структур является ортофосфорная, пирофосфорная или трифос-форная кислота (например, аденозин-5 -ди-, аденозин-5 -три- и аденозин-5 -тетрафосфаты), либо моноэфир ортофосфорной кислоты (в случае нуклеотидных коферментов и пирофосфатов, участвующих в реакциях переноса групп). Другая группа биологически важных соединений включает ацилфосфаты, в качестве характерных примеров которых можно привести ацетил- или карбамилфосфаты и моноэфиры ацилфосфатов, в частности ациладенилаты. Соединения обеих этих групп осуществляют важные биологические функции перенос энергии, перенос групп или коферментов. Кроме упомянутых, фосфорными соединениями, участвующими, как известно, в исполнении такого рода функций, являются фосфоенолпировиноград-ная кислота, амидофосфорная кислота и ее производные. Следует отметить, что не удалось установить, осуществляет ли адено-зин-5 -тетрафосфат > какие-либо биологические функции или же он является лишь продуктом диспропорционирования аденозин-5 -трифосфата (АТФ). [c.512]

    В отдельных случаях (биосинтез метионина, тимидина) в роли коферментов переноса СНз-групп выступают коферментные формы витамина В12 или тетрагидрофолевые кислоты. [c.704]

    В ферментатавных синтезах душистых терпенов алифатического и алициклического ряда из сахаров и производных жирных углеводородов важную роль играет кофермент А (СоА). Он является производным аденозинтрифосфорной кислоты. Буква А означает основную функцию этого кофермента — перенос ацильных групп. Кофермент А состоит из аденина, связанного Р-Н-гликозидной связью с З-фосфо-В-рибозой. Остаток рибозы содержит при С-5 пирофосфатную группу, связанную через пантотеновую кислоту с меркаптоэтиламином. Последний фрагмент является активной частью кофермента, так как его тиольная группа легко образует тиоэфирные связи с карбоксильными остатками кислот  [c.39]

    Гидролиз АТР обычно сопряжен с энергетически невыгодными реакциями, такими, как биосинтез макромолекул, осуществляемый путем образования фосфорилированных промежуточных продуктов. Другие реакционноспособные молекулы-переносчики, называемые коферментами, переносят в ходе биосинтеза иные химические группы например, NADPH переносит водород - в виде протона и двух электронов (гидрид-ион), а ацетт-СоА переносит ацетильные группы. Молекулы полимеров, такие, как белки и нуклеиновые кислоты, собираются из небольших активированных молекул-предшественников путем многократного повторения реакций дегидратации. [c.104]

    Тетрагидрофолят - переносчик активированных одноуглеродных групп он играет важную роль в метаболизме аминокислот и нуклеотидов. Этот кофермент переносит одноуглеродные фрагменты с различной степенью окисления, которые способны к взаимопревращениям наиболее восстановленная форма-метильная группа, наиболее окисленные формильная, формимино-и метенильная группы, группа с промежуточной степенью окисления-метилен. Основной донор активированных метильных групп-8-аденозилметионин, который синтезируется путем переноса аденозильной группы АТР на атом серы метионина. [c.253]

    Поскольку модельная реакция не отводит никакой роли дезо-ксиаденозину, а его 5 -метиленовая группа осуществляет перенос водорода во всех кофермент-В12-зависимых миграциях углеродных атомов, то важно установить источник вводимого в продукт водорода. [c.391]

    Для осуществления механизма ППК необходимо образование ковалентного соединения между флавиновым коферментом и субстратом для того, чтобы стал возможным перенос электронов от одной молекулы к другой. Поскольку это ионная реакция, то молекула флавина должна иметь электрофильный центр, легко атакуемый нуклеофильным субстратом. При исследовании флавино-вого ядра обнаружены четыре центра, способных подвергаться атаке, среди которых положение 4а, по-видимому, является наиболее электрофильным. Действительно, реакционноспособность возрастает в какой-то степени благодаря индуктивному эффекту прилегающих амидной и амидиновой групп. [c.414]

    Кофер.иенты часто участвуют в переносе электронов или функциональных групп (водородный атом, ацетил, метил, аминогруппы и т.д.). Как и витам ины, коферменты входят в качестъе необход1и юго компонента в пищу. [c.274]

    В качестве активаторов — кофакторов — в ферментах встречаются ионы железа, меди, цинка, магния, марганца, калия, натрия, молибдена. Роль коферментов в важнейших процессах, катализируемых ферментами, — именно в переносах водорода и электронов — играют сложные вещества, молекулы которых представляют сочетание нескольких звеньев. Из них особенно часто встречаются никотинамиддинуклеотид (НАД+), молекула которого состоит из аденина (органическое основание), d-рибозы фосфатной группы и никотинамида, и флавиновых нуклеотидов (ФМН и ФАД)  [c.356]

    Впоследствии тиоэфир восстановленной липоевой кислоты переносит свою ацильную группу на кофермент А по типичному механизму переэтерификации (разд. 8.3.4). Полной реакцией является окислительное декарбоксилирование нировииоградной кислоты (суммировано в разд. 5.7.1). [c.312]

    Гомогенный препарат тирозиназы (Кертеш, 1957) содержит 0,20°/о меди, которая, очевидно, действует как простетическая группа. При хроматографировании препарата и грибов было получено вещество с более низким содержанием меди (0,067о) и сильно пониженной активностью (Фриден , 1961). Другие ферменты, дегидрогеназы, переносят водород не на кислород, а на акцептор — фермент или кофермент. [c.718]

    В другом эпимере дейтерий находится над плоскостью рисунка, водород — под ней. Асимметрия невозможна в отсутствие амидной группы. При химическом восстановлении получается почти равное количество обеих форм с очень 1не1большим. преимуществом одной из нчх за счет асимметрического синтеза. При химическом окислении восстановленного кофермента продукт содержит примерно половину первоначального количества дейтерия. В противоположность этому в результате ферментативного восстановления образуется один специфический эпимер. Дейтерий (или водород в общем случае) переносится только на одну сторону пиримидинового цикла, что схематически показано на формуле. При ферментативном окислении восстановленного кофермента стереохимическая специфичность та же, что и при восстановлении. [c.727]


Смотреть страницы где упоминается термин Коферменты переноса групп: [c.177]    [c.486]    [c.489]    [c.443]    [c.625]    [c.625]    [c.29]    [c.800]    [c.301]    [c.371]    [c.101]    [c.104]    [c.395]    [c.471]    [c.274]    [c.364]   
Смотреть главы в:

Коферменты -> Коферменты переноса групп




ПОИСК





Смотрите так же термины и статьи:

Коферменты



© 2025 chem21.info Реклама на сайте