Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидролиз анионов органических кислот растворах солей

    Гидролиз анионов органических кислот в растворах солей [c.488]

    Значительное влияние на коэффициенты распределения оказывает и концентрация водородных ионов в водных растворах. При экстракции кислородсодержащими органическими растворителями это влияние обусловлено участием ионов водорода в образовании экстрагируемого соединения, а также связыванием части экстрагента в соединение с кислотой. Изменение pH водного раствора может менять и равновесную концентрацию анионов, входящих в состав экстрагируемой соли в случае анионов слабых кислот. Влияние pH раствора на коэффициенты распределения особенно существенно при экстракции внутрикомплексных соединений. Эту зависимость широко используют для разделения элементов и при исследовании гидролиза солей. В последнем случае предполагается, что продукты гидролиза не переходят в органическую фазу. [c.88]


    Получение гидротропного лигнина. Гидротропный лигнин получают обработкой древесины при повышенной температуре (150...180°С) гидротропными растворами, т.е. растворами гидротропов - соединений, способных увеличивать растворимость органических веществ в воде. Для выделения лигнина пользуются концентрированными (40...50%-ми) водными растворами натриевых солей органических кислот с объемистыми анионами, например, бензоата натрия, толуолсульфоната натрия и т.п. Предполагают, что при высокой температуре вода вызывает гидролиз связей лигнина с гемицеллюлозами и частично связей в сетчатой структуре лигнина. Анионы солей, проникая в лигнин, вызывают ослабление водородных связей, набухание и в конце концов переход в раствор. [c.370]

    При рассмотрении общего эффекта ускорения реакции при гомогенном катализе в растворах следует отметить большую роль неорганических электролитов кислот, оснований и солей, а также недиссоциирующих органических веществ и продуктов диссоциации органических веществ. При выяснении механизма ускоряющего влияния неорганических и органических добавок на превращения в гомогенных растворах важно знать, ионным или молекулярным состоянием вещества вызван их специфический эффект и способ, которым осуществляется ускоряющее действие в различных каталитических реакциях. Поэтому гомогенный катализ в растворе можно подразделить на I) катализ неорганическими и органическими кислотами и катализ органическими и неорганическими основаниями 2) катализ, при котором и кислоты и основания одинаково пригодны для одной и той же реакции 3) катализ под влиянием анионов или катионов и 4) катализ, при котором имеется совместное действие ионов и недиссоциированных молекул, т. е. хорошо выражен солевой эффект. Оствальд [370] нашел, что полученные экспериментально константы скорости реакций гомогенного каталитического гидролиза метилацетата и инверсии тростникового [c.198]

    Плутоний из водного раствора можно легко экстрагировать многими органическими растворителями, не смешивающимися с водой. Экстракция растворителями используется большей частью в нитратных системах, поскольку сильные комплексообразуюпще анионы, например сульфат-, фосфат-, фторид- или оксалат-ионы, способствуют удержанию плутония и других актинидных элементов в водной фазе, препятствуя, таким образом, экстракции. Для экстракции плутония могут быть использованы различные органические растворители. Наиболее эффективными экстрагентами являются растворители, применяемые при экстракции урана (см. гл. V, табл. 5.32). Наиболее важными из них являются метилизобутилкетон (гексон) и ТБФ . Весьма эффективным экстраген-том, в особенности для лабораторных исследований, является также дибутиловый эфир. Для извлечения актинидных элементов в органическую фазу при экстракции дибутиловым эфиром и метилизобутилкетоном необходимо, чтобы водная фаза имела высокую концентрацию нитрат-ионов. Необходимая концентрация нитрат-ионов достигается добавлением растворимых солей, например нитратов аммония, магния, кальция или алюминия. Более высоко-заряженные катионы оказывают более сильное высаливающее действие, поэтому в качестве второго нитрата часто используют нитрат алюминия. Поскольку азотная кислота в гексоне заметно растворяется, желательно, чтобы кислотность водной фазы была уменьшена до такой степени, насколько это возможно сделать, чтобы не вызвать явлений гидролиза. При экстракции ТБФ азотная кислота может служить одновременно высаливателем, что является большим преимуществом. Это возможно потому, что ТБФ вполне устойчив по отношению к окислению азотной кислотой. Отделение плутония от урана и продуктов деления экстракционными методами зависит от экстракции различных валентных состояний плутония, а также от возможности получения водных растворов, [c.281]


    Свободные карбоновые и сульфокислоты, фенолы, а также соли органических азотсодержащих оснований с неорганическими и органическими кислотами, образующие в результате гидролиза кислые растворы, можно обнаружить по реакции исследуемого вещества с водным щелочным раствором комплекса никеля с биуретом. В желтом щелочном растворе этих солей с внутри-комплексным анионом (1) устанавливается равновесие  [c.632]

    Рассматривая влияние разбавления на скорость реакций гидролиза, катализируемых слабыми электролитами (органическими кислотами), нельзя не заметить сильного действия, оказываемого на скорости этих реакций введением солей кислот — катализаторов. Изучение природы такого влияния стало объектом ряда работ химиков в конце XIX в. Как показал в 1888 г. Шпор [189], в присутствии солей сильных кислот катализирую щая способность этих кислот увеличивается, а при введении солей слабых кислот — падает. Через два года Аррениус выяснил, что сила слабой кислоты в присутствии (ее.— В. К.) солей... приблизительно обратно пропорциональна количеспву соли [.90, стр. 7], поскольку добавление к раствору анионов кислотного остатка резко уменьшает степень диссоциации слабой кислоты. Вызванное этим уменьшение концентрации ионов водорода сильно замедляет реакцию. Поэтому малые количества нейтральных солей действуют намного сильнее при большом разбавлении кислоты, чем при малом [122, стр. 239]. [c.49]

    Алкиламины подходящего размера и структуры экстрагируют кислоты с образованием солей, которые остаются в устойчивом—иногда коллоидном — растворе в органических разбавителях. Ряд сродства, в котором располагаются свободные основания при экстракции кислот и при анионном обмене их солями, в общем подобен адсорбционному ряду для анионообменных смол. Алкиламины представляют собой слабые основания, соли их легко разрушаются гидролизом, что дает простой метод реэкстракции экстрагированных металлов. [c.209]

    К анионам с основными свойствами относятся S ", HS , N ", СНзСОг , а также анионы многих других органических кислот. Гидролиз соли слабого основания и сильной кислоты, например, хло-...подобные реакции — рида аммония, сопровождается увеличением коп-это реакш и 1пдролиза центрации ионов водорода, т. е. раствор закисляется  [c.296]

    Мы проводили экстракцию из сульфатных растворов (На504 — Na2S04), к которым добавляли винную кислоту для предотвращения гидролиза олова. Экстрагировали олово (4,2-10" г-атом л) равным объемом 0,1 М раствора оксихинолина в хлороформе при 25 + 0,5° С. В качестве поставщиков крупных органических анионов использовали как растворимые в воде соли органических кислот, так и органические кислоты, растворимые в органической фазе. Олово определяли полярографическим методом. [c.34]

    Рауля указывают на то, что коллоидные частицы образуются путем йссоциации индивидуальных молекул или ионов мыла. При этом, однако, эти изменения в электропроводности и в осмотических свойствах не соответствуют друг другу по величине, и, например, значения электропроводности оказываются более высокими, чем те значения, которые можно ожидать на основании измерений осмотических свойств. Вскоре после того, как стал известен указанный основной факт различия в величине изменений электропроводности и осмотических свойств, было со всей определенностью доказано, что высокая электропроводность не связана с гидролизом мыла. Все это привело Мак-Бэна к мысли об образовании коллоидных частиц, или мицелл, в результате ассоциации длинноцепочечных анионов жирной кислоты, обладающих большим электрическим зарядом. Эта картина далее была детально разработана и развита, но и сейчас в своей основе она остается неизменной. Свойства анионных и катионных поверхностноактивных веществ, относящихся к группе соединений, называемых коллоидными электролитами, являются во многих отношениях сходными, так же как и свойства других соединений этого типа, как, например, многих красителей и аналогичных солей высокомолекулярных органических кислот или оснований, обладающих поверхностной активностью, присущей обычным молекулярнорастворимым веществам. Помимо заряженных или ионных мицелл в растворах коллоидных электролитов могут находиться мицеллы со сравнительно небольшим зарядом, а в растворах неионогенных поверхностноактивных веществ образуются только незаряженные мицеллы, вследствие чего исследование коллоидных свойств этих соединений является значительно более простым. Рассматривая мицеллярную теорию поверхностноактивных веществ, мы не будем учитывать историю вопроса и изложим наиболее существенные факты, на которых построены современные взгляды, нашедшие отражение в ряде обзорных статей за последние годы [2]. [c.288]


    Влияние кислотности раствора на экстрагпрованне комплекса довольно сложно. Основные черты этого влияния заключаются в следующем является не очень сильной кислотой при введении в раствор посторонней кислоты увеличивается количество молекулярной НЗОМ, последняя же хорошо извлекается органическим растворителем. Таким образом, увеличение кислотности раствора приводит к удалению из водной фазы ионов родана. В соответствии со сказанным выше это сдвигает равновесие в водной фазе в сторону образования комплексов с меньшим числом координированных групп, т. е. комплексов, которые, как было показано выше, слабо извлекаются этилацетатом. Таким образом, увеличение кислотности раствора должно, с одной стороны, действовать аналогично уменьшению концентрации ЗСК в растворе, т. е. ухудшать экстрагирование комплекса, особенно при небольших начальных концентрациях роданида (см. фиг. 4, кривая 1). С другой стороны, увеличение кислотности в растворе может действовать благоприятно. Совершенно очевидно, что в неводную фазу не может переходить только анион извлекается комплексная кислота НРе(ЗСК)4 или соль КН4Ре(ЗСК)4. Если кислота HFe(S N)4 достаточно сильная, то Н+-ион может экстрагироваться лишь по электростатическим причинам (электронейтральность раствора). В этих случаях кислотность водной фазы, при количествах кислоты, необходимой для устранения гидролиза соли, железа и для образования НГе(ЗС1Ч)4, не будет иметь больщого значения. Однако кислота НРе(ЗС]Ч)4 может быть и не очень сильной, т. е. Н+-ИОП также достаточно прочно связан с комплексным анионом. В этом случае экстрагирование будет заметно облегчаться присутствием в водной фазе Н+-ионов, сдвигающих вправо равновесие образования молекулы слабой кислоты Н+4- Ре(ЗСК),-= НРе(ЗСМ)4. [c.170]

    Ионнообменная хроматография. Процесс ионного обмена широко известен в связи с его применением для умягчения воды. Впервые он был использован для разделения неорганических катионов и анионов. Позже были сделаны попытки применить хроматографическую теорию к ионнообменной адсорбции. В хроматографическом анализе диссоциирующих органических соединений в последнее время все более широкое применение получают синтетические смолы, способные к избирательной адсорбции и обладающие ионнообменными свойствами (Адамс и Холмс, 1935). Получены смолы с кислыми свойствами для катионного обмена и смолы с основными свойствами для анионного обмена. Адсорбция этими смолами в значительной мере определяется зарядом растворенного вещества (при этом надо отметить, что обменная адсорбция представляет собой очень сложный процесс), а для элюирования применяются растворы кислоты, щелочи или соли. Синтетические анионнообменные смолы (например, Амберлит IR4) применялись для хроматографического разделения аминокислот (например, глутаминовой и аспарагиновой кислот в продуктах гидролиза шерсти). Другими примерами применения ионного обмена могут служить анализ нуклеиновой кислоты, адсорбция алкалоидов и отделение свободных сульфокислот от азокрасителеЙ с ЗОзМа-группами в молекуле. Ричардсон наблюдал, что свободные сульфокислоты Небесно-голубого FF и других высокомолекулярных красителей быстро адсорбируются ионнообменной смолой Деацидит В. С уменьшением величины молекулы может быть достигнут такой предел, при котором начинается медленная диффузия в структуру смолы, юз Ионнообменная хроматография может применяться для разделения, очистки и анализа ионизирующихся красителей (кислотные красители и прямые красители для хлопка с сульфогруппами в молекуле и оспов- [c.1514]

    Азобензол — основание, еще более слабое, чем фенилгидрокснламин. Он растворим в концентрированной серной кислоте, но высаживается из нее водой вследствие гидролиза образовавшейся соли. Такая соль в среде концентрированной серной кислоты легко отнимает у множества типов органических соединений водородный атом с двумя электронами (гидрид-анион) и, превращаясь в гидразобензол (стр. 81), перегруппировывается в бензидин (А. Н. Несмеянов, Р. В. Головня). [c.80]


Смотреть страницы где упоминается термин Гидролиз анионов органических кислот растворах солей: [c.446]    [c.94]    [c.82]    [c.661]    [c.157]    [c.203]   
Физическая химия растворов электролитов (1950) -- [ c.488 , c.489 ]

Физическая химия растворов электролитов (1952) -- [ c.488 , c.489 ]




ПОИСК





Смотрите так же термины и статьи:

Анионы органических кислот

Гидролиз анионов органических кислот

Гидролиз солей

Гидролиз солей по аниону

Кислота анионная

Кислота органическая

Раствор солей

растворах кислот в растворах солей



© 2024 chem21.info Реклама на сайте