Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектр энергии излучения

    Черное тело, подобно любому другому телу, непрерывно испускает лучи всех длин волн X, т. е. обладает непрерывным спектром. Энергия излучения Е (в единицу времени и с единицы поверхности) зависит от длины волны и от температуры. Для абсолютно черного тела эту зависимость дает теоретическое уравнение Планка  [c.298]


Рис. 1.10. Спектр энергии излучений. Рис. 1.10. <a href="/info/157425">Спектр энергии</a> излучений.
    Спектры электромагнитного излучения, испускаемого, поглощаемого и рассеиваемого веществом, изучает раздел физики — спектроскопия. Квант поглощаемой или испускаемой веществом энергии соответствует изменению энергии при каком-либо единичном акте атомного или молекулярного процесса (табл. 11). Наиболее коротковолновое излучение (у-излучение) соответствует ядерным процессам. Квантовые переходы внутренних электронов атомов и молекул сопровождаются рентгеновским излучением. Электромагнитное излучение ультрафиолетовой и видимой области спектра отвечает квантовым переходам внешних (валентных) электронов. Колебанию атомов в молекулах отвечает инфракрасное излучение, вращению молекул — дальнее инфракрасное излучение, спиновому переходу элект-1)онов и ядер — радиоизлучение. [c.140]

    Спектральные исследования излучения пламен показали, что излучение имеет преимущественно хемилюминесцентную природу, причем основная часть излучаемой энергии приходится на ИК-область спектра. Видимое и УФ-излучения несут в себе сравнительно малую часть общей энергии излучения (менее 1 %). [c.114]

    Энергия, испускаемая во время радиоактивного распада, является одной из форм электромагнитного излучения высокой энергии. Видимый свет, мик-ро- и радиоволны тоже являются электромагнитным излучением, но меньшей энергии. На, рис. V.1 показаны главные составляющие спектра электромагнитного излучения и их источники. [c.303]

    Неионизирующие излучения имеют более низкую энергию. Излучение в ультрафиолетовом, видимом и инфракрасном диапазонах спектра — это неионизирующая радиация. Когда эти виды излучений передают свою энергию веществу, происходит возбуждение молекул усиливаются их колебания или электроны переходят на более высокий уровень. В результате такого переноса энергии могут происходить химические реакции, как, например, при приготовлении пищи в микроволновых печах. Длительное неионизирующее облучение также может нанести вред организму. Солнечные ожоги, например, вызываются длительным действием неионизирующего излучения Солнца. Микроволновое и инфракрасное излучения могут оказать пагубное воздействие на организм. [c.304]


    Современное состояние науки о ядре и его структуре находится примерно в том же положении, в котором находилась теория строения атома в 1925 г. Имеется возможность проводить измерения свойств ядер, описывать и классифицировать их, но нет еще общей теории, позволяющей объяснить эти свойства. Ядра состоят из протонов и нейтронов, сосредоточенных в небольшом объеме и взаимодействующих сильнее всего лишь со своими непосредственными соседями по ядру. В некоторых отношениях (это касается энергии связи) они подобны спрессованным капелькам однородных частиц, но в других отношениях (предпочтительность четного числа нуклонов и существование магических чисел) они ведут себя так, будто образуют оболочечные структуры, подобные электронным оболочкам. Диаграммы энергетических уровней для ядер могут быть построены на основе спектров у-излучения, сопровождающего ядерные превращения. Ядра, подобно электронам в атоме, тоже имеют основные и возбужденные состояния. [c.435]

    На протяжении щести лет берлинский профессор Макс Планк занимался проблемой равновесного электромагнитного излучения абсолютно черного тела. Он искал единую формулу распределения энергии в спектре этого излучения. До него были известны формулы, описывающие два крайних случая — испускания длинных и коротких волн. Общее же решение было неизвестно. После долгих раздумий Планк пришел к выводу, что проблема может быть решена, если допустить, что энергия колебаний атомов Е (Планк полагал, что твердое тело можно представить -состоящим из атомов, колеблющихся около положения равновесия) может принимать не любые значения, но только кратные некоторому наименьшему количеству (кванту) энергии (е) .  [c.7]

    Спектральные методы дают широкие возможности для наблюдения и исследования соответствующих аналитических сигналов в различных областях спектра электромагнитного излучения— это у-лучи, рентгеновское излучение, ультрафиолетовое (УФ), оптическое и инфракрасное излучение, а также микроволновое и радиоволновое. Энергия квантов перечисленных видов излучения охватывает очень широкий диапазон от 10 до 10 эВ, соответствующий диапазону частот от до 10 Гц. [c.7]

    Тепловое излучение любого твердого тела характеризуется непрерывным спектром распределения энергии излучения по длинам волн. Сам спектр излучения твердого тела всегда является неравномерным н может быть самым различным у разных твердых тел. Описать кривые спектрального распределения энергии излучения всех твердых тел единой аналитической зависимостью не представляется возможным. [c.12]

    Однако в реальности нагретая внутренняя поверхность трубы излучает кванты энергии в основном в инфракрасном диапазоне частот, которые немедленно поглощаются молекулами нефтепродукта. На рис. 1.8 изображена спектральная степень черноты поверхности нержавеющей стали, которая показывает спектр частот излучения и их интенсивности. Подобные же зависимости наблюдаются для малоуглеродистых сталей и сплавов [3]. Фактически спектр излучения факела претерпевает существенное перераспределение, проходя через стенку трубы змеевика. [c.25]

    Энергия излучения характеризуется электромагнитным спектром, охватывающим область от километровых радиоволн до десятых долей ангстрема у Излучения и космических лучей. Для характеристики участка спектра часто используют также волновое число V, которое показывает, какое число длин волн приходится на 1 см пути излучения в вакууме, и определяется соотношением у= 1/Х. [c.177]

    Все электронные переходы, в том числе и переходы на локальные уровни типа 5 и 3—4 сопровождаются электронно-фонон-ным взаимодействием, в результате которого часть электронной энергии превращается в вибрационную энергию, т. е. в теплоту, нагревающую твердое тело выше первоначальной температуры, а часть излучается в виде квантов сниженной частоты, по сравнению с частотой поглощаемого излучения Поэтому, когда ширина запрещенной зоны не слишком сильно превосходит 3,1 эВ, т. е. энергию фотонов самого коротковолнового видимого света, полоса электромагнитного излучения данного вещества может находиться в области спектра видимого излучения. При более значительной ширине запрещенной зоны может иметь место испускание только ультрафиолетового излучения. [c.122]

    Характеристический для данного элемента линейчатый спектр испускается, когда энергия бомбардирующих электронов достаточна, чтобы ионизировать атомы посредством удаления электронов из наиболее глубоких внутренних слоев (например. К). На освободившееся в /С-слое место переходит электрон с одного из вышележащих слоев Ь, М, N и т. д. При каждом из таких переходов испускается фотон рентгеновского излучения. Спектр этого излучения состоит из отдельных линий, соответствующих переходам электронов из слоев Ь, М, N и т. д. в К-слоп. Совокупность этих линий образует /С-серию рентгеновского спектра, которую обычно используют в рентгенографии. [c.352]

    При когерентном рассеянии света молекулами, описываемом законом Рэлея (см. уравнение (467)), часть энергии излучения переходит в энергии вращательного и колебательного состояния молекул. Поэтому в спектре рассеянного света наряду с частотой линии возбуждающего света наблюдаются линии с большими и меньшими частотами, соответствующие выделению и поглощению энергии молекулами. Поскольку при комнатной температуре преобладает основное колебательное состояние, происходит только поглощение энергии. Линии получаемого таким образол спектра комбинационного рассеяния (КР) часто значительно сдвинуты по сравнению с линиями падающего на вещество света в сторону больших длин волн. В то время как ИК-спектр связан с изменением дипольного момента молекул, появление линий в КР-спектре связано с изменением поляризуемости молекул. Поэтому линии спектра [c.354]


    Видимая область спектра электромагнитного излучения показана на рис. 23,16, в верхней части которого (в порядке повышения энергии) даны первые буквы названий спектральных цветов.  [c.388]

    СПЕКТРОФОТОМЕТРИЯ (абсорбционная) — физико-химический метод исследования растворов и твердых веществ, основанный на изучении спектров поглощения в ультрафиолетовой, видимой и инфракрасной части спектра. Методом С. изучают зависимость интенсивности (энергии) излучения, поглощения, отражения, рассеяния или иного преобразования света, излучаемого веществом или падающего на него, от длины волны. С. широко применяют для изучения строения и состава различных соединений (комплексов, красителей, аналитических реагентов и т. д.), для качественного и количественного определения веществ (открытия следов элементов в металлах и сплавах). Приборы, которыми пользуются в С., называют спектрофотометрами. [c.234]

    Закон, связывающий частоту спектральных рентгеновских линий характеристического излучения С порядковым номером элементов (2), был открыт Г. Мозли (1913) и формулируется следующим образом квадратный корень из частот ) или (сД) соответствующих характеристических линий является линейной функцией порядкового номера элементов. Это означает, что если за счет энергии, поступившей извне (например, за счет мощной электронной бомбардировки), выбит электрон из атома с самой близкой к ядру орбитали (п=1), то на освободившееся место может перейти электрон со 2-й, 3-й, 4-й и т. д. орбиталей, в результате чего получается (высвечивается) квант рентгеновского излучения Е =к 2, " =/ivз, "л = /1г Спектр полученного излучения назван (-серией. Зависимость /(-серии от заряда I представлена на рис. 5.2. [c.114]

    Если электрон выбит со второй орбиты ( =2), то переходу электронов на этот уровень с более удаленных орбит будут отвечать кванты энергии рентгеновского излучения Еь =Ь , Е1"=к. и Е[ " = = /гv5 и т. д. Спектр такого излучения назван -серией (рис. 5.2). Переходу электронов с более высоких уровней на третью орбиту будет соответствовать ЛГ-серия и т. д. [c.114]

    Ранее (см. гл. XII) была рассмотрена энергия осциллятора по теории Бора—Зоммерфельда и было показано, что следствием уравнения (XX.1) является дискретный спектр энергии, что привело к формулам Планка для излучения абсолютно черного тела, а Эйнштейна и Дебая — для теплоемкости. Теория Бора — Зоммерфельда позволила объяснить основные черты спектра атомов. Линейность спектров являлась следствием дискретности энергий, а квантовые числа оказались непосредственно связанными с числами П в уравнении (XX. 1). [c.424]

    Рассчитайте энергии излучений (в Дж/моль) различных участков спектра. [c.30]

    Окрашивание пламени при внесении в него щелочных металлов или их соединений вызвано электронными переходами предварительно возбужденных атомов. При обратном переходе электронов возникает излучение, которое воспринимается в виде окраски пламени. Например, за счет теплоты пламени атомы натрия поглощают 200,8 кДж/моль теплоты, при этом происходит возбуждение атома и переход электронов на более высокие энергетические уровни. Желтая линия спектра натрия имеет , = 5,893-10 нм и возникает при переходе электрона с уровня Зр на уровень 3s. Проверьте расчетом соответствие длины волны и энергии излучения. [c.30]

    Энергия химической связи может быть определена по спектру молекулы. Электронные молекулярные спектры состоят из ряда линий, расстояния между которыми уменьшаются в области больших частот или высоких энергий света. Линии спектра сливаются при некоторой определенной частоте — частоте, при которой энергия перестает квантоваться и начинается диссоциация молекул на атомы. По положению границы между линейным спектром и сплошным можно определить минимальное количество энергии, необходимое для разрыва связи, т. е. саму энергию связи. Приравняем энергию связи энергии излучения, при которой появляется сплошной спектр  [c.37]

    Планетарная модель атома достаточно наглядно представляла строение атома. Пользуясь этой моделью, можно было объяснить некоторые свойства химических элементов, например способность одних атомов образовывать только положительно заряженные ионы, а других — только отрицательные. Однако планетарная модель атома находилась в противоречии с законами классической электродинамики, согласно которым вращающийся вокруг ядра электрон должен излучать энергию в виде электромагнитных волн. В соответствии с законом сохранения энергии излучение энергии электроном должно неизбежно сопровождаться уменьшением его скорости и электрон неминуемо должен упасть на ядро, в результате чего атом в виде планетарной системы должен перестать существовать. Иначе говоря, атомы должны излучать энергию в виде непрерывного, сплошного спектра и погибать как таковые. [c.45]

    Если тело нагрето, оно излучает теплоту. Тепловое излучение, так же как и видимый свет, является одним из видов электромагнитных волн. Однако оно обычно состоит из волн с большей длиной и, следовательно, с меньшей энергией, чем видимый свет. Было замечено, что энергия излучения от нагретого тела распределяется по непрерывному спектру, зависящему от температуры тела. При низких температурах спектр состоит в основном из излучения с низкой энергией, т. е. соответствует инфракрасной области. Однако при повышении температуры спектр меняется, и в нем усиливается область, отвечающая высоким энергиям. Это легко заметить, если иметь в виду, что при нагревании тела его излучение соответствует видимой области спектра. Сначала тело становится красным, а затем при повышении температуры — белым, например таким, как нити в лампах накаливания. [c.17]

    Запись спектра пропускания образца на однолучевом спектрометре по методу прямого отклонения . Описанные выше усилительные системы в совокупности с инфракрасным монохроматором образуют спектрометр, который работает по методу прямого отклонения . Для получения спектра пропускания исследуемого образца Т =///о в функции К илп V производят две записи запись кривой распределения по спектру энергии излучения источника /о и запись I, производимую в прежних условиях, но с исследуемым образцом перед щелью спектрометра. Как было отмечено в 43, энергия, излучаемая в единичном спектральном интервале штифтом Нернста и силитовым стержнем, изменяется до ста раз при переходе от 1,5 до 25 р,. Для компенсации уменьшения энергии при переходе к длинноволновой области спектра обычно увеличивают поток энергии, поступающий на приемник, с помощью расширения щелей спектрометра. В некоторых приборах расширение щели производится автоматически по специальной программе, учитывающей как изменение распределения энергии источника по спектру, так и свойства оптической системы, дисперсию призм и потери энергии на поглощение и отражение в различных областях спектра. При работе на приборах, у которых отсутствует программное расширение щели, пропускание образца (кривые /о и I) записывают по участкам. [c.212]

    В пидимой и ультрафиолетовой областях спектра. Энергии колебательных переходов (10 1—10 эВ) соответствует излучение (поглощение) в ближней инфракрасной области. Наименьшую величину имеют энергии вращательных переходов молекул (10 —10 эВ)  [c.144]

    Прямым экспериментальным подтверждением зависимости скорости распространения пламени от его излучения могут служить данные, приведенные в табл. 3.2 [150]. Изучали влияние присадок на скорость распространения пламени в смеси СО + Оа при одновременной регистрации ИК-спектров излучения пламени и по ИК-спектрам вычисляли наблюдаемую энергию излучения пламени (и абл). Результаты этих исследований приведены в табл. 3.2. Поскольку часть энергии излучения пламени расходуется в предпламенной зоне (Ипогл), полная энергия излучения (Un) представляет собой сумму  [c.123]

    Известно, что при прохождении через вещество лучей от источника излучения. это вещество поглощает лучи только определенной длины волны (частоты), и по закону Кирхгофа само вещество излучает только те лучи, которые оно в данных условиях поглощает. В результате этого калчдая молекула, каждый атом или ион дают характерные частоты в спектре поглощения, спектре испускания или спектре комбинационного рассеяния. Спектр — это распределение энергии излучения, испускаемого (поглощаемого) телом по частотам или длинам волн. Задача качественного спектрального анализа заключается в обнаружении этих харак-тсрнстичоских частот и сравнении их с частотами индивидуальных веществ. Для количественного анализа требуется еще оценка интенсивности излучения. [c.90]

    Величина фэи зависит от длины волны возбуждающего излу чения (закон Вавилова). Однако спектр люминесценции слож ных молекул в конденсированной фазе не зависит от длинь волны возбуждающего излучения, потому что излучение кван тов флуоресценции осуществляется только с одного уровня (5l >, см. рис. 1.32). Так как наблюдается одновременное и не зависимое друг от друга свечение очень большого числа моле кул, суммарное излучение некогерентно. Энергия излученных квантов меньше энергии поглощенных, поэтому максимум спектра флуоресценции сдвинут в сторону длинных волн по отношению к максимуму спектра поглощения этого же соединения (правило Стекса — Ломмеля). [c.95]

    Принятое в классической статистике представление о различимости частиц является эмпирическим допущением, которое оправдывается опытом при применении ее к идеальным газам. Применение статистики Больцмана к фотонному н электронному газам приводит к ряду несоответствий между теорией и опытными данными . Для правильного решения задачи о распределении энергии излучения раскаленного тела по участкам его спектра Бозе и Эйнштейн применили к фотонному газу другой способ подсчета микросостояний, в основу которого noлoжиJ[и [c.168]

    Установка для изучения кинетики реакций должна удовлетворять следующим требованиям а) максимальное отношение сигнала к шуму при измерении слабых световых потоков б) возможность регистрации свечения в широкой области спектра. Для выполнення первого требования необходима максимальная концентрация энергии излучения на приемник света — детектор и подбор соответствующего детектора. [c.121]

    В лабораторной практике -пользуются бактерицидными увиоле-выми лампами БУВ-30 или БУВ-15. Оболочка этой лампы изготовлена из увиолевого стекла, пропускающего до 50% резонансного излучения лампы с длиной волны 253,7 нм. Распределение энергии излучения по спектру для бактерицидной лампы БУВ-30 приведено в табл. 8. Достоинством ламп низкого давления является высокий выход излучения резонансной линии 253,7 нм при малых тепловых потерях, долговечность, простые схемы включения. К недостатку ламп низкого давления относится трудность получения излучения высокой интенсивности. [c.139]

    Входящие в уравнение (VII, 19) константы могут быть приняты рапными Сх == 3,22-10 вт м [3,74-10 ккал м -ч) и = 1,24 х X 10 вт м [1,438-10 [ккал/лг-ч). Площадь под каждой из кривых на рис. VП-6 выражает общую удельную энергию излучения (т. е. приходящуюся на СДН1ПП1У поверхности и единицу времени) для всего спектра длин воли. [c.272]

    Наиболее простые системы с химической связью — двухатомные молекулы газов (N2, Н2, О2), состав которых установил еще Авогадро. Ион Н2+, содержащий два протона и электрон, — вот самая простая система из трех частиц с одной химической связью. Для того чтобы понять, что же такое химическая связь в самом простом ее проявлении, выясним причины устойчивости этих простых молекул. Однако прежде всего познакомимся с экспериментальными данными об энергетических уровнях молекул. Они значительно более разнообразны, чем в атомах, так как в молекулах наряду с электронными энергетическими переходами происходят также изменения колебательной и вращательной энергии. Поскольку все эти изменения энергии накла-дыЕ аются друг на друга, молекулярные спектры по большей части имеют очень сложное строение. Можно различать три ти-Таблица А.6. Характеристика спектров электромагнитного излучения [c.60]

    Обратите внимание на то, что для образования одного моля сахара СбН120б должно быть поглощено и использовано 48 молей фотонов. Необходимая для этого энергия излучения поступает из видимой части солнечного спектра (см. рис. 5.3 ч. 1). Фотоны поглощаются фотосинтетическими пигментами в листьях растений. К важнейшим из этих пигментов относятся хлорофиллы структура наиболее распространенного хлорофилла, так называемого хлорофилла-а , показана на рис. 25.1. Хлорофилл представляет собой координационное соединение. Он содержит ион связанный с четырьмя атомами азота, которые расположены вокруг него по вершинам квадрата в одной плоскости с металлом. Атомы азота входят в состав порфиринового цикла (см. разд. 23.2). Следует обратить внимание на то, что в окружающем ион металла цикле имеется ряд двойных связей, чередующихся с простыми связями. Благодаря такой системе чередующихся, или сопряженных, двойных связей хлорофилл способен сильно поглощать видимый свет. На рис. 25.2 показано соотношение между спектром поглощения хлорофилла и спектральным распределением солнечной энергии у поверхности Земли. Зеленый цвет хлорофилла обусловлен тем, что он поглощает красный свет (максимум поглощения при 655 нм) и синий свет (максимум поглоще- [c.442]

    В 1899 г. Луммер и Принсгейм провели экспериментальную проверку распределения энергии излучения абсолютно черного тела при различных температурах (рис. 1-2). Как видно из рис. 1-3, уравнение Вина дает прекрасное совпадение с экспериментом в области малых длин волн, а уравнение Рэлея — Джинса оказывается приблизительно верным в области очень больших длин волн. Однако ни одно из уравнений не согласуется с экспериментальными кривыми во всей области спектра. [c.19]


Смотреть страницы где упоминается термин Спектр энергии излучения: [c.146]    [c.316]    [c.288]    [c.599]    [c.32]    [c.637]    [c.47]    [c.233]    [c.53]    [c.10]   
Цвет в науке и технике (1978) -- [ c.46 , c.47 , c.508 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия излучения



© 2025 chem21.info Реклама на сайте