Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изомеризация катионная

    Причину можно было бы искать, в частности, в том, что в случае цитра-ля а циклизации должна предшествовать изомеризация катиона III в катион IV, производящийся от цитраля Ь (И). При этом надо допустить, что эта [c.197]

    Если о процессе распада ионов масс-спектрометрия дает прямую информацию, то о процессах изомеризации — только косвенную. Прямую информацию о процессах изомеризации катион- и анион-радикалов можно получить методом ЭПР. [c.60]


    Диметилбутены могут образовываться на алюмосиликате либо в результате скелетной изомеризации катиона 2-метилпен-тена-3, либо вследствие аномального присоединения (вопреки правилу Марковникова) изопропильного катиона к пропилену. Второй путь более вероятен, поскольку скелетная изомеризация изо-гексильного катиона должна была бы с еще большей легкостью приводить к 3-метилпентенам, которые, однако, в смеси димеров пропилена практически отсутствуют. н-Гексены образуются на алюмосиликатном катализаторе (через стадию аномального присоединения протона к пропилену) в количестве, не превышающем 3 %. [c.89]

    Может показаться случайным неодинаковое различие в поведении соответствующих изомерных углеводородов с геминальными атомами углерода в рядах пентана и гексана, а именно неопентана и неогексана. Эти углеводороды аналогичны друг другу в том отношении, что каждый из них является для своей группы наиболее термодинамически выгодным изомером при низких температурах. Различие же между ними заключается в том, что неогексан участвует в изомеризации, катализируемой галоид-алюминием, а неопентан нет. Главные стадии обратимого ионного цепного механизма, включающие равновесие между неогексаном и 2,3-ди-метилбутаном, показаны уравнением (29). Здесь К+ обозначает или катион, полученный из одного из участвующих изомеров, или инициатор цепи, полученный из двух других источников  [c.32]

    Экспериментально установлено, что при обмене натрия на полива-ные катионы активность катализатора возрастает с увеличением заряда и уменьшением радиуса катиона. Однако платиновые и палладиевые катализаторы, содержащие трех- или четырехзарядные катионы, менее селективны и стабильны в реакции изомеризации парафиновых углеводородов. [c.60]

    Катализаторы изомеризации с небольшой массовой долей благородных металлов (0,4-1%) можно получать методом ионного обмена из растворов аммиакатов этих металлов. При ионном обмене распределение металла по грануле цеолита не всегда равномерно, особенно если металл вводят в гранулированные цеолиты. В таких случаях обмен на катион благородного металла следует проводить в присутствии ионов, содержащихся в применяемой для обмена форме цеолита (для катализаторов изомеризации это аммонийная форма, и обмен проводится в избытке NHX). Такой прием позволяет получать катализаторы с равномерным распределением металла во всем объеме гранул и во всей массе цеолита. [c.62]

    По этим факторам, в частности, установлено, что скорость реакции диспропорционирования определяется катионами Се, N1, Си Ре, а скорость реакции изомеризации — Се, Сг, Сс1, М . Установлено экспериментально, что активность синтезированных образцов катализаторов с этим катионным составом на 25—30% выше, чем у катализаторов данного типа, существующих в настоящее время. При этом оказалось, что наличие указанных катионов в составе цеолитов существенно повышает стабильность последних. [c.71]


    В присутствии цеолитов изомеризация бутена-1 в цис- и транс-бутен-2 протекает с близкими скоростями (отношение k lkn близко к 1), однако при замещении катиона Na+ на двухвалентный катион Си + константы ц с-транс-изомеризации заметно увеличиваются. [c.48]

    Цеолиты проявляют довольно значительную активность в реакциях структурной изомеризации олефинов и мало активны в скелетной изомеризации [51—54]. Наиболее селективны в первой реакции цеолиты с одновалентными катионами и цеолиты типа А (табл. 51). Цеолиты типа X и Y с поливалентными катионами менее селективны в отношении изомеризации, так как они катализируют побочные процессы (крекинг, полимеризацию, перераспределение водорода). - [c.163]

    Образование изопропилбензола при сернокислотном алкилировании бензола пропанолами и пропиленом указывает на то, что равновесие между первичными и вторичными пропил-катионами, смещается в сторону последних в результате 1,2-гидридного переноса значительно быстрее реакции алкилирования. Часть изопропилбензола образуется по более сложному механизму, поскольку наблюдается скелетная изомеризация пропильной группы. По-видимому, при алкилировании бензола [1- С]пропанолом-1 в образующемся первичном пропил-катионе наряду с [c.115]

    Свойства карбоний-ионов. Свободные карбоний-ионы являются высокоактивными частицами, вступающими в реакции с очень большой скоростью. Для некоторых реакций, могущих протекать как по радикально-цепному, так и по карбоний-ионному механизму, активность карбоний-ионов может быть сравнена с активностью радикалов. Так, при полимеризации стирола по радикальному механизму при 20°С константа скорости продолжения цепи равна 35 л-моль- -с , энергия активации продолжения цепи 32,7 кДж/моль (7,8 ккал/моль). Полимеризация стирола на свободных катионах проходит с константой скорости продолжения цепи 35-10 л моль- с- при 15°С и энергией активации 8,4 кДж/моль (2 ккал/моль). Константа скорости присоединения карбоний-иона к молекуле стирола на пять порядков больше, чем для радикала. Карбоний-ионы, как и радикалы, подвергаются мономолекулярному распаду и бимолекулярным реакциям замещения и присоединения. Существенным отличием в химических свойствах карбоний-ионов от свойств радикалов является способность первых с большой скоростью изомеризоваться. Изомеризация карбоний-ионов может проходить в результате переноса как гидрид-иона, так и карбоний-ионов. [c.164]

    Цеолитные катализаторы в различных поливалентных катионных (или декатионированных) формах используют для проведения реакций органического и неорганического цикла крекинг, гидрокрекинг, изомеризация, алкилирование, гидрирование, дегидрирование, окисление и т. д. [209—214]. В некоторых случаях они проявляют высокую активность без добавок промоторов, а в других— при нанесении на них активных компонентов. Цеолитные катализаторы термически стабильны, устойчивы по отношению к таким контактным ядам, как сернистые и азотсодержащие соединения, металлы, не вызывают коррозии аппаратуры. Развитая поверхность (до 800 м /г), способность к катионообмену и высокая механическая прочность цеолитов позволяют использовать их в качестве носителей каталитически активной массы.  [c.171]

    Следует, конечно, учитывать, что изомеризация моносахаридов в щелочной среде частично изменяет конформацию исходного моносахарида, и поэтому описанный выше механизм проявляется как тенденция. Для подтверждения приведенной гипотезы о механизме действия различных катионов необходимы дополнительные исследования. [c.90]

    ИЗОМЕРИЗАЦИЯ З-МЕТИЛПЕНТАНА В ТРИТИРОВАННОЙ СЕРНОЙ КИСЛОТЕ. РЕГУЛИРОВАНИЕ СКОРОСТИ РЕАКЦИИ С ПОМОЩЬЮ ТРИФЕНИЛМЕТИЛЬНОГО КАТИОНА [c.22]

    Прежде чем приступить к обсуждению роли трифенилметильного катиона, необходимо отметить, что изомеризация 3-метилпентана в свежей кислоте протекает медленно (имеется некоторый индукционный период, как и в случае 2,3,4-триметилпентана), н ее можно ускорить, добавляя небольшие количества олефина, например 2-метилбутена-1. Однако реакция, инициируемая олефином, моментально замедляется, поскольку мгновенная высокая концентрация промежуточных карбониевых ионов в кислоте быстро снижается до равновесной. Эта пониженная скорость является теперь мерой скорости гидридного переноса в кислоте. Экспериментальные данные, обсуждаемые ниже, были получены при 23 °С в опытах с несколькими эмульсиями, содержащими равные объемы метилпентана и 95%-ной серной кислоты. [c.23]

    Как и в случае серной кислоты, состав алкилата на цеолитном катализаторе несколько меняется в зависимости от исходного олефина (табл. 2). Был использован цеолит V, содержащий 16—20% катионов Са2+ и 60—80% катионов РЗЭ +. При алкилировании изобутана бутеном-1 и смесью н-бутиленов, состоящей преимущественно из бутена-2, получаются алкилаты близкого состава, по всей вероятности, из-за предварительной изомеризации бутена-1 в бутен-2, как и на серной кислоте. [c.84]

    При растворении диметилциклопропилкарбинола в РЗОдН при —50° С снектр имеет другой вид, причем сигналы вблизи 7,74 м. д. указывают на изомеризацию катиона и появление олефиновых протонов. По-видимому, в этом случае образуется 2-метилпентенил-катион [16]. [c.276]


    К моменту, когда диффузия частиц с массой, близкой к массе исходной молекулы, становится заметной (порядка сотни пикосекунд), в облученной системе, кроме реакций сольватации электрона и трансформации дырки в катион-радикал, происходят и реакции распада и изомеризации катион-радикалов, если таковые возможны, распад сверхвозбужденных состояний, ионно-молекулярные реакции катион-радикалов, которые приводят к возникновению радикалов и стабильных ионов (см. разд. 2.2 и 2.3). О превращениях первичных возбужденных состояний известно, что высшие синглетные и триплетные состояния переходят в низшие. При нейтрализации зарядов также образуются низшие синглетные и триплетные возбужденные состояния. У приведенных выше в этом разделе примеров полярных соединений их возбужденные состояния распадаются на радикалы и молекулы (см. разд. 2.7) и дезактивируются весьма быстро. В случае неполярных соединений время жизни зарядов намного больше. Таким образом к моменту времени в несколько пикосекунд мы имеем состав промежуточных частиц второго поколения, существенно отличающийся от состава промежуточных частиц первого поколения, отраженного уравнением 5.1, а именно М+, ее", екв , М, М, МН+, осколочные ионы, радикалы, стабильные конечные продукты. [c.236]

    Следы некоторых галоидалкилов нромотируют изомеризацию метилциклопентана так же, как олефины [уравнение (38)]. Например, и- и изо-пропилбромиды и втор- и т эет-бутилбромиды эффективны нри 25°. Однако никакой изомеризации не наблюдалось, когда пытались исполь зовать в качестве инициатора бромистый метил или бромистый этил [54] при той же температуре. Это отсутствие реакционной способности бромистого метила и бромистого этила было объяснено как результат возможной трудности при отрыве первичным ионом карбония атома водорода от углеводорода. Эффективность к-нропилбромида не противоречит такой интерпретации, так как, по-видимому, катионы к-пропила легко переходят в катионы изонропила. [c.44]

    Шнайдер и Кеннеди [44] сообщают, что .. . было найдено, что 2,3-димв1 ил-бутан не вступает в реакцию с изобутаиом в присутствии трет-бутилфторида и фтористого бора. Они объясняют это наблюдение тем, что изомеризация иона, образовавшегося присоединением т эет-бутил-катиона к 2,3-диметилбутену-2, не вносит изменений в скелете. Однако их экспериментальные данные показывают, что хотя 2,3-диметилбутан менее реакциониоспособен, чем 2-метилпентан, он характеризуется такой же реакционной способностью, как и 2,4-диметилпентан. [c.318]

    Различие продуктов, получаемых алкилированием изобутана двумя различными бутиленами в присутствии хлористого алюминия, легко объясняется цепным механизмом алкилирования [38d]. Алкилирование бутеном-1 включает образование диметилгексил-катиона (VII), который подвергается изомеризации до образования октана в результате взаимодействия с изопентаном  [c.325]

    Из представленной схемы видно, что изомеризация циклогексана сопровождается образованием изогексанов. Реакция протекает до тех пор, пока все гексильные катионы в комплексе К МР не будут замещены на циклогексильный или метилциклопентильный ион СбН " , что хорошо согласуется с экспериментальными результатами. Водород не участвует в образовании гексанов, скорость реакции не изменяется в отсутствие водорода (табл. 1.11). Отсюда можно сделать вывод, что влияние нафтенов на превращение парафиновых углеводородов определяется характером взаимодействия нафтенов с катализатором. В сверхкислотных средах НР - ЗЬР нафтены образуют комплекс ЯМР , как и парафиновые углеводороды. Скорость образования этого комплекса для различных углеводородов неодинакова и убывает в ряду С Н 2 = С5 Н12 > Сз Н) 4 > СбН] 4. Эта закономерность объясняет, почему при добавлении циклогексана скорость изомеризации н-гексана увеличивается, а для и-пентана остается неизменной. [c.33]

    Влияние содержания и способа внесения металлического компонента на активность, селективность и стабильность катализаторов. Декатионированные и поликатионные формы цеолита типа фожазит обладают некоторой активностью в изомеризации парафиновых углеводородов в отсутствие металлов, но при температурах на 60-100 °С выше, чем в их присутствии. Декатионированная и некоторые катионные формы морденита обладают высокой начальной активностью в реакции изомеризации нормальных парафинов в присутствии водорода, однако в отсутствие металла активность их быстро снижается. Введение платины до оптимального содержания в цеолит типа фожазит приводит к линейному увеличению выхода изопарафиновых углеводородов (рис. 2.9). Введение плат1шы в Н-морденит несколько уменьшает его активность, но увеличивает селективность и стабильность. [c.62]

    Введение в катионзамещенный цеолит другого катиона методом пропитки или катионного обмена [54] меняет активность катализатора во всех реакциях превращения бутенов, причем это изменение зависит и от метода введения добавки. Введение никеля методом пропитки ингибирует побочное образование пропилена и высших углеводородов. Введение никеля методом катионного обмена, наоборот, повышает выход пропилена с 29 до 36% и понижает активность катализатора в изомеризации н-бутенов. Так, на цеолите СаУ с 5% N1, полученном пропиткой, отношение буте-ны-2 бутен-1 составляет 3,1, а на катализаторе, полученном обменом, оно равно 2,7. (Лттимальным, по данным [54], оказалось содержание N1, равное 1%). [c.164]

    При платформинге интенсивно протекают реакции изомеризации парафинов и нафтенов и гидроизомеризации олефинов. Это вызвано тем, что катализаторы нлатформинга относятся к числу так называемых нолифункциопальных (бифункциональных) катализаторов они катализируют одновременно реакции, протекающие по катионному механизму, свойственные кислым катализаторам, и реакции гидрирования-дегидрирования, характерные для металлических и окиснометаллических катализаторов. Бифункциональный катализатор состоит из алюмосиликата (нлн активированной кислотами окиси алюминия), содержащего небольшое количество одного из металлов VIII группы (Р1, Р(1, N1 г( др.). При умеренных темнературах порядка 300—350° С среди реакций, происходящих над бифункциональными катали-зато])ами нод давлением водорода, преобладают реакции изомеризации. [c.493]

    Катализаторы — комплексные соединения переходных жталлов. Реакции восстановления, гидрирования, окисления, гидратации ненасыщенных соединений, изомеризации, полимеризации и многие другие в промышленных условиях осуществляются в растворах в присутствии комплексных катализаторов. По типу применяемых катализаторов эти процессы иногда объединяют в группу координационного катализа. В качестве катализаторов в таких процессах применяются комплексные соединения катионов переходных металлов. Сюда относятся металлы УП1 группы Ре, Со, N1, Ри, КЬ, Рс1, 05, 1г, Р1, а также Си, Ag, Hg, Сг и Мп. Сущность каталитического действия заключается в том, что ионы металлов с -электронной конфигурацией могут взаимодействовать с другими молекулами, выступая как акцепторы электронов, принимая электроны на свободные -орбитали, и как доноры электронов. На рис. 200 показано взаимодействие ВЗМО этилена со свободной -орбиталью иона металла (а) и одновременное взаимодействие заполненной -орбитали металла с НСМО этилена (б). Донорно-акцепторное взаимодействие, обусловленное переходом электронов с я-орбитали этилена, уменьшает электронную плотность между атомами углерода и, следовательно, уменьшает энергию связи С=С. Взаимодействие, обусловленное переходами электронов с -орбитали иона металла на разрыхляющую орбиталь молекулы этилена, приводит к ослаблению связей С=С и С—Н. [c.626]

    Следовало ожидать, что если олефины являются промежуточными соединениями в изучаемой реакции, то при алкилировании [1- С] бутанолом-1 и [1- С] бутеном-1 распределение радиоактивного углерода С в алкильной группе 2-фенилбутана должно быть одинаковым, поскольку в том и другом случаях образуется наиболее стабильный втор-бутил-катион. Между тем, данные радиометрического анализа показывают, что с олефином величина скелетной перегруппировки в два раза выше. Этот факт подтверждает, что величина скелетной изомеризации алкильной группы может заметно возрасти при использовании в качестве алкилирующих агентов олефинов. На основании литературных данных и приведенных выше результатов дейтерообмена при алкилировании СеОб спиртами или при алкилировании спиртами в присутствии катализатора ВРз-020 можно считать, что роль олефинов как промежуточных продуктов алкилирования возрастает при повышении температуры. [c.117]

    Радиометрический анализ высококипящих продуктов, полученных при перегонке катализатов, показал, что если при изомеризации 2-этилиндана удельная радиоактивность смолистых остатков соответствует удельной радиоактивности исходного углеводорода, то в случае 1-этилиндана она уменьшается на 35%. Очевидно, что при расширении кольца 2-этилиндана образуется, главным образом, 2-метилтетралин с положительным зарядом при третьем углеродном атоме. Существование такого катиона сопровождается интенсивной димеризацией, что объясняет сохранение радиоактивности. Для 1-этилиндана положительный заряд промежуточного тетралил-катиона экранирован метильной группой. Это способствует протеканию реакции алкилирования бензола, следствием которой является уменьшение радиоактивности на 7з за счет разбавления бензолом. [c.169]

    Изучая реакции переалкилирования трет-пентилбензола в толуоле и л-грег пентилтолуола в бензоле при 80 °С и контакте с AI I3, авторы пришли к выводу, что перегруппировка трег-пентильной группы протекает по стадиям деалкилирование — перегруппировка — переалкилирование. Считают, что изомеризация протекает и без отрыва алкильной группы от ароматического ядра, причем в качестве промежуточных соединений получаются феноний-ионы, мостиковые катионы и классические ионы. [c.203]

    Изомеризация первичного катиона во вторичный идет с выделением тепла. Экзотермична также изомеризация вторичного карбоний-иона в третичный. Если углеродный скелет карбоний-иона имеет первичные, вторичные и третичные углеродные атомы, то наиболее устойчива структура третичного карбоний-иона. Изомеризация углеродной цепи в результате переноса метиланиона связана с переходом вторичного карбоний-иона в первичный и поэтому эндотермична. Поэтому изомеризация углеродного скелета протекает значительно медленнее, чем первичного карбоний-иона во вторичный и третичный и вторичного в третичный. [c.169]

    Второй вопрос, рассматриваемый в настоящей работе, — поиски метода увеличения селективности в дополнение к уже известным и лспользуемым в нефтепереработке приемам — таким, например, как улучшение перемешивания, увеличение отношения изобутана к олефину, снижение температуры и изменение объемной скорости подачи олефина. Один из путей разрешения поставленной задачи заключается в нахождении скорости лимитирующей стадии. Авторы стараются доказать, что гидридный перенос от молекулы третичного парафина протекает в общем случае медленно, и может рассматриваться как стадия, определяющая общую скорость процесса. То, что отрыв катионом гидрид-иона от молекулы изобутана протекает медленно по сравнению с другими возможными процессами (депротонирование и некоторые реакции изомеризации), следует также из рассмотрения данных по исследованию реакций обмена [4—11]. [c.14]

    В концентрированной серной кислоте изомеризация 3-метилпентана протекает медленно. Если реакцию проводить в тритированной кислоте, сразу же после образования какого-либо иона достигается равновесие между 2- и 3-метилнентильными ионами. Предполагается, что каждый ион подвергается быстро.му обратимому обмену всех протонов, смежных с катионным центром, так что мож- [c.22]

    Если изомеризация н-бутиленов — быстрая реакция и если трнметилпентильные и диметилгексильные катионы образуются главным образом в результате взаимодействия соответственно бутена-2 и бутена-1 с грет-бутилкарбоний-ионом, то использование н-бутилена с радиоактивным углеродом должно было бы привести к образованию триметилпентанов и диметилгексанов с соответствующими термодинамике количествами С в них. Но, по данным [8], в диметилгексанах, а также в легкой и тяжелой фракциях содержание С больше, чем в триметилпентанах. [c.116]

    Если в качестве катализатора иопользована серная кислота, образуется относительно небольшое количество диметилгексильных катионов в результате взаимодействия бутена-1 с трет-бу-тильными катионами [И] [см. реакцию (76)] выше уже были рассмотрены причины, позволившие сделать такое заключение. Однако в присутствии фтористоводородной кислоты из бутена-1 образуется значительно больше диметилгексанов и меньше триметилпентанов, чем из бутена-2 [19]. Изомеризация бутена-1 в бутены-2 [реакция (8а)] с НР протекает значительно медленнее, [c.121]


Смотреть страницы где упоминается термин Изомеризация катионная: [c.151]    [c.231]    [c.319]    [c.325]    [c.329]    [c.338]    [c.340]    [c.33]    [c.60]    [c.96]    [c.72]    [c.98]    [c.108]    [c.115]    [c.118]    [c.241]   
Органический синтез. Наука и искусство (2001) -- [ c.392 ]

Органический синтез (2001) -- [ c.392 ]




ПОИСК





Смотрите так же термины и статьи:

Изомеризация 3-метилпентана в тритированной серной кислоте. Регулирование скорости реакции с помощью трифенилметильного катиона



© 2025 chem21.info Реклама на сайте