Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деструктивная гидрогенизация крекинг

    Главными методами деструктивной переработки нефтяного сырья являются термический крекинг, каталитический крекинг и деструктивная гидрогенизация (крекинг в присутствии водорода). Самым старым пз них является термический крекинг, который заключается в разложении сырья под действием высокой температуры. [c.187]


    Примером адиабатических систем являются реакционные камеры процессов термического крекинга деструктивной гидрогенизации, каталитического крекинга с движущимся катализатором, прямой гидратации этилена, дегидрирования бутиленов и др. [c.263]

    Деструктивная гидрогенизация для получения чистых углеводо-родов. Получение нафталина из продуктов сухой перегонки угля не обеспечивает исключительной потребности в этом продукте. Первым шагом при решении этой проблемы было усовершенствование процессов ароматизации и высокотемпературного крекинга нефтяных фракций. Так, пиролизом керосиновой фракции в паровой фазе при 650 —700 °С в присутствии медных катализаторов получают фракцию, содержащую около 3% нафталина. [c.257]

    В современной нефтепереработке наибольшее значение имеют следующие методы деструктивной переработки нефтяного сырья 1) термический крекинг, основанный на действии высокой температуры и высокого давления 2) каталитический крекинг в присутствии катализаторов 3) деструктивная гидрогенизация в присутствии водорода. [c.9]

    Удаление серы из дистиллятного сырья представляло собой неизмеримо более легкую задачу, чем получение искусственного жидкого топлива из угля или смол. Естественно, что она могла быть решена применением простых и дешевых установок среднего давления в одну ступень и использовапием более дешевых и легко регенерируемых, хотя и менее активных катализаторов. Сначала гидроочистке подвергались более легкие дистилляты, затем все более тяжелые, включая газойли и смазочные масла. Было заманчиво при гидроочистке тяжелого сырья осуществить и его деструкцию. Так, с конца пятидесятых годов в опытных масштабах, а с начала шестидесятых — в промышленных масштабах стали развиваться процессы гидрокрекинга, имевшие целью повысить выход наиболее цев(ных нефтепродуктов — бензина и дизельного топлива, а также улучшить качество сырья для каталитического крекинга. Процессы гидрокрекинга не были возвратом к многоступенчатой технологии деструктивной гидрогенизации смол и углей, хотя и носили в себе основные черты последней. Видимо, поэтому к ним и применили новый термин — гидрокрекинг. В процессах деструктивной гидрогенизации разделение их на ступени и применение высоких давлений было вынужденной мерой, так как катализаторы были дороги, не регенерировались и были слишком чувствительны к ядам. В современных процессах гидрокрекинга применяются новые, более активные катализаторы, многие из которых могут регенерироваться. Процессы осуществляются максимум в две ступени и при меньшем давлении водорода. Многие из вновь разработанных катализаторов обладают [c.11]


    Аналогичным образом, деструктивная гидрогенизация молекул углеводородов может вначале пойти по пути крекинга до получения олефинов и даже углерода, который, в свою очередь, в процессе гидрогенизации по реакции 6 образует метан. Окислению углеводородов обычно предшествует термический крекинг (реакция 13). Важнейшим условием может оказаться окисление атома углерода (реакция 1). [c.90]

    Полноте использования природных и синтетических нефтей, помимо методов их глубокой переработки (крекингом н деструктивной гидрогенизацией) на бензин, весьма способствует широкое применение дизелей, а за последнее время также и воздушного (газотурбинного) и жидкостного реактивных двигателей. Топливом для дизелей являются соляровые масла и моторная нефть, т. е. более тяжелые фракции перегонки нефти, в большей своей части служащие сырьем и для крекинга. К дизельному топливу, в частности к топливу, отличающемуся легкой самовоспламеняемостью, предъявляются специфические качественные требования. Сила стука дизельного мотора (сходного с детонацией в карбюраторном двигателе) определяется воспламеняемостью сжигаемого в нем горючего. Легко воспламеняющееся топливо способствует спокойному ходу дизельных машин. Установлено также, что сокращение [c.11]

    Отметим также, что ири нарофазном крекинге торфяной смолы, проводившемся Р. О. Яковлевым, получались бензины с октановым числом 83—87, тогда как деструктивная гидрогенизация тех же видов торфяной смолы (М. С. Немцов). [c.171]

    Сущность процесса деструктивной гидрогенизации до сих пор еще не ясна из-за сложного состава и невыясненного строения угольного вещества. Орлов и Крым рассматривали деструктивную гидрогенизацию как непрерывный ряд последовательно протекающих и связанных между собой процессов полукоксования, крекинга и гидрогенизации. Они исходили из того, что при повышении температуры образуются различные насыщенные и ненасыщенные радикалы. Ненасыщенные радикалы димеризуются и полимеризуются, образуя более сложные, богатые углеродом соединения. Полимеризация замедляется из-за гидрогенизационного действия водорода, которое превращает ненасыщенные соединения в насыщенные, не способные полимеризоваться [3, с. 365]. [c.181]

    Деструктивная гидрогенизация. Процесс заключается в крекинге твердого и жидкого сырья под давлением 300—700 ат. Высокое парциальное давление водорода в зоне реакции позволяет подвергать крекингу такие тяжелые виды сырья, как уголь, сланцы, тяжелую смолу полукоксования углей и нефтяные остатки типа гудрона. Температура процесса 420—500 С. Катализаторы содержат железо, вольфрам, молибден, никель. Целевым продуктом является обычно бензин, но можно отбирать и более тяжелые дистилляты (типа дизельного и котельного топлив). [c.11]

    Как применительно к углю, так и применительно к тяжелым нефтяным остаткам, на установках этого типа расходуется много водорода (5—7 мас.% на сырье). Технологическое оформление установок сложно, так как процесс протекает при очень высоком давлении (300—700 ат) и высоких температурах (420—500° С). Гидрирование должно осуществляться в две или три стадии (в зависимости от сырья), т. е. цех гидрирования представляет собой целый комплекс установок, снабженных дорогостоящими аппаратурой и оборудованием высокого давления. Развитие в 40—50-х годах каталитического крекинга и коксования — процессов значительно более простых и дешевых, заставило совершенно отказаться от внедрения деструктивной гидрогенизации на нефтеперерабатывающих заводах. [c.263]

    При температурах крекинга происходит одновременный разрыв насыщенных связей с образованием более простых ароматических, а также нафтеновых и изопарафиновых углеводородов. Таким образом, в условиях деструктивной гидрогенизации не наблюдается конденсации ароматических колец, которая, как известно, приводит к коксообразованию. [c.267]

    Полициклические ароматические углеводороды получают обычно из каменноугольной высокотемпературной смолы, которую считают уникальным источником сьфья для их выделения. Практически все методики основываются на использовании этого сырья. По-видимому, в дальнейшем более благоприятным источником полициклических ароматических углеводородов будут тяжелые смолы пиролиза, экстракты из газойлей каталитического крекинга и риформинга. В них содержится много полициклических ароматических углеводородов (см. гл. 4) и отсутствуют основания, фенолы и гетероциклические соединения, что облегчает очистку. В результате гидрогенизационной переработки удается получать смеси, углеводородный состав которых несложен, на пример, фенантрен с незначительными примесями антрацена. Часть ароматических углеводородов в виде частично гидрированных продуктов находится в продуктах деструктивной гидрогенизации углей, а при каталитическом дегидрировании при 2,5 МПа они могут быть получены в чистом виде. Тяжелые масла гидрирования содержат 2,5% фенантрена и 1,5% хризена, что составляет в сумме 1,2% на исходный уголь [1, с. 108]. [c.295]


    В связи с описанным крекингом индена под давлением большой интерес представляет работа Туровой-Поляк (179) по деструктивной гидрогенизации гидриндена. Последний пропускался несколько раь над 20 %-ным платинированным углем в токе водорода нри температуре 380° С до прекращения изменения констант. В результате указанной реакции гидринден почти нацело превратился в орто-метилэтилбензол. [c.128]

    При деструктивной гидрогенизации твердых и жидких топлив преимущественно протекают реакции гидрирования, крекинга и в меньшей степени - реакции изомеризации, циклизации, полимеризации и конденсации. Органическая масса твердых топлив состоит в основном из ароматических конденсированных систем с разной степенью насыщенности водородом. Кислород, азот и сера тоже могут входить в эти соединения (связи С—О, С—N. С—8), поэтому у используемых катализаторов должны преобладать функции гидрирования соединений, содержащих 8, N и О, а также олефинов, образующихся при крекинге исходного сырья. [c.131]

    Механизм этого процесса был рассмотрен выше. Самые тяжелые углеводороды, смолы и асфальтены частично гидрогенизуются и расщепляются по гидрогенизованному циклу, образуя газойли. Одновременно кислород и сера смол и асфальтенов превращаются в воду и сероводород, в результате уменьшается содержание кислорода и серы. Образование бензина в этой стадии небольшое. Однако выход бензина может увеличиваться ad libitum, если образовавшийся газойль подвергать деструктивной гидрогенизации во второй стадии при более жестких температурных условиях и более продолжительное время. В табл. 103 приведены результаты деструктивной гидрогенизации крекинг-смолы по Хасламу и Русселю [10]. Выходы бензина могут быть значительно выше, до 30% или даже более. [c.226]

    В отличие от схемы превращения эфиров, описанный в. литературе [60], тиоэфиры разлагаются с перераспределением водорода, способствующего образованию тиоспирта и ал-кена. Как и вслучае превращения тиоспиртов, при распаде тиоэфиров имеют место реакция выделения сероводорода, изомеризация продуктов превращения, деструктивная гидрогенизация, крекинг продуктов катализа и образование кокса. [c.138]

    Четвертый выпуск Трудов ВНИГИ охватывает широкий круг вопросов, в числе которых главенсп-ующее место занимают работы по изучению механизма деструктивной гидрогенизации, крекинга различных продуктов, по полукоксованию и газификации. Как и в работах предшествующих лет, в ныне публикуемых работах особое внимание уделяется вопросам кинетической закономерности каталитических превращений под углом зрения современных теоретических воззрений. [c.3]

    Главными методами деструктивной переработки нефтяных дистиллятов являются термический крекинг, каталитический крекинг и деструктивная гидрогенизация (крекинг в присутствии водорода). Основное назначение деструктивных процессов — дополнительное получение бензина путем разложения кероси-но-газойлевых фракций, мазута или соляровой фракции (одного из продуктов вакуумной перегонки мазута). [c.26]

    В результате этого процесса из сланцевого масла удаляется около /з серы и кислорода и около азота. Хорошо насыщенное среднее масло (177—330°), смешанное с не подвергшимися обработке легкими фракциями сланцевого масла, можно затем очистить над неподвижным слоем катализатора (сернистый вольфрам) с целью дальнейшего освобождения от азотистых загрязнений, с последующей деструктивной гидрогенизацией до бензина в паровой фазе над таким катализатором, как 10%-ный сернистый вольфрам на фуллеровой земле. Продукт парофазной гидрогенизации характеризуется высокой степенью очистки, низким содержанием серы и высокой приемистостью к ТЭС этилированные бензины имеют октановое число 94 и даже,выше. Гидрированное среднее масло является идеальным сырьем для термического крекинга, но не годится для каталитического крекинга из-за сравнительно высокого содержания остаточного азота [16]. При каталитическом крекинге самого сланцевого масла найдено, что выход бензина и жизнь катализатора, очевидно, зависят от содержания азота в сырье [22]. [c.282]

    Изучена зависимость показателей процесса деструктивной гидрогенизации в гкидкой фазе (условия 1) от качества сырья чем больше оно ароматизировано, тем ниже объемная скорость и производительность и тем больше расход водорода на бесполезное образо-вашю газа до 95% в случае крекинг-остатков). Более целесообразно сочетание гидрогенизации на стационарных катализаторах с другими процессами нефтепереработки удалением асфальтенов термическими методами и гидрированием деасфальтизатов (условия II). Показано, что выходы жидких продуктов в таких вариантах составляют до 85—88% (от нефти), расход водорода на газообразование 24—37%. Производительность аппаратуры высокого давления увеличивается в несколько раз [c.58]

    Бензин деструктивной гидрогенизации, благодаря тому, что в нем содержание гомологов бензола выше, нежели самого бензола, отличается тем ценным свойством, что его тяжелые фракции (в отличие от соответственных фракций бензинов прямой гонки и крекинга) также обладают высокими антидетона-ционными свойствами. Кроме того, в отличие от бензинов крекинга, эти бензины стойки при хранении (в отношенпи окисле- [c.6]

    Таким образом, комбинирование бензина деструктивной гидрогенизации (получаемого из угля или крекинг-остатков нефти) со спиртом или лучше с гомологами бензола или с индивидуальными изопарафиновыми углеводородами, открывает пути для нрименепия моторов с весьма высокими степенями сжатия и, следовательно, с высоким коэффициентом полезного действия. Установлено, что если при расходе 1 гл горючего машина со степенью сжатия 5 проезжает 15 миль (т. е. при расходе 1 л пробег равен 6,377 км), то та же машина со степенью сжатия 6, 7 и 8 проезжает 16,37 17,58 и 18,55 мили (т. е. при расходе 1 л соответственно 6,96 7,59 и 7,89 км), или расход горючего при степенях сжатия 5, 6, 7 и 8 составит на каждые 100 км 15,681, 14,386, 12,882 и 9,500 л. Расходы топлива в двигателе в 400 л. с., при различных октановых числах этих топлив, иллюстрируются, кроме того, следующими данными [3]  [c.7]

    При деструктивной гидрогенизации, помимо термического распада и насыщения кратных связей водородом, как в процессе, являющемся по существу каталитическим крекингом под давлением водорода, имеют место также реакции изомеризации, алки-лированпя, автодеструктивного алкилировання и т. п. Однако преобладает в этом процессе реакция гидрирования, вследствие чего выход разветвленных форм здесь ниже, чем при обычном каталитическом крекинге. Впрочем в жидкой фазе деструктивное гидрирование еще не доходит до конца (до образования углеводородов области бензина). Здесь образуется так называемое среднее масло, которое уже в паровой фазе превращается над неподвижным катализатором Б бензин. [c.155]

    Эти бензины стойки при хранении (в отношении окисления), болое однородны по составу (преобладают нафтены) п имеют более высокую температуру вспышки. Бензины деструктивной гидрогенизации отличаются большей приемистостью к тетраэтилсвинцу, чем бензины терзлического крекинга. [c.171]

    В СССР обстоятельные исследования деструктивной гидрогенизации нефтяных остатков, а также сравнительные исследования гидрогенизации нефтяных остатков и первичных смол были проведены И. С. Динер и М. С. Немцевым [И ], Л. С. Альтман и М. С. Немцевым [12], Б. Н. Маслянским и Ф. С. Шендерович [13] и др. Было показано, что в условиях относительно низкой температурной гидрогенизации (в жидкой фазе) сырье с большим содержанием парафиновых углеводородов не может дать бензина с высокими антидетонационными св011ствами. Однако нри высоком содержании в сырье ароматических углеводородов или фенолов и в этих условиях могут получиться бензины, вполне удовлетворительные по антидетонационным свойствам. Так, бензин, полученный из грозненского парафинистого мазута путем пизкотемпературной гидрогенизации, имел октановое число 46,5. Бензин, полученный из крекинг-остатка установки Винклер-Коха в Грозиом, дал бензин с октановым числом 57,5. Бензин из сланцевой смолы имел октановое число 58,5, а бензин, полученный ири восстановлении фенолов первичных смол — октановое число 92. [c.172]

    В процессе очистки нефтепродуктов пногда целесообразно сочетанпе нескольких методов и удаление части серы щелочью, части кислотой, части фильтрацией через земли и т. д. Иногда ( чистку сочетают с переработкой тяжелых фракций в легкие погоны, напрнмер методами деструктивной гидрогенизации пли каталитического крекинга. В заключение этого раздела лавы остановимся на недавних работах [18] по каталитическому десульфированию сырой нефти над бокситом и другими Гхэтализаторами в условиях одновременно протекающего частичного крекинга. [c.318]

    Для поппмеризации вольтализацией могут быть использованы керосиновые фракции как прямой гонки, так и гидро-генизатов смол. Кратковременную деструктивную гидрогенизацию или даже крекинг (в результате которых содержание олефиновых углеводородов не падало бы, а возрастало), комбинированные с последующей полимеризацией средних фракций на масла, следует решительно предпочесть методу получения масеп гидрогенизацией тяжелых дестиллатов и пека первичных смол. [c.438]

    Такое представление о качестве дизельных топлив и способах его получения не соответствуй перспективам моторостроения и должж . бы ь.. пересмотрено Производство высококачественных дизельных топлив и к тому же в громадных количествах не может базироваться только на прямой перегонке нефти. Здесь также необходимы деструктивные и каталитические процессы. Только применением новейших методов производства можно обеспечить получение больших количеств продуктов определенного химического состава, удовлетворяющих всем требованиям современных двигателей. Нет сомнения, что деструктивная гидрогенизация, синтин-процесс и каталитический крекинг в определенных его модификациях станут теми основными процессами, на которых будет базироваться производство высоко-J[c.7]

    При термическом и каталитическом крекинге происходит перераспределение водорода, содержавшегося в сырье, между продуктами крекинга. Чем тяжелее фракционный состав сырья и чем больше в нем содержится асфальто-смолисгых веществ, тем больше образуется при крекинге тяжелых, обедненных водородом компонентов крекинг-остатка и кокса. Достаточно высокого выхода легких дистиллятных продуктов при минимальном коксоотложении или полном его отсутствии для глубоких форм крекинга тяжелого сырья можно достичь вводом водорода извне . Такая форма крекинга (как правило, в присутствии катализаторов) носит название деструктивной гидрогенизации. В нефтяной промышленности известны также процессы так называемой недеструктивной гидрогенизации. Примером подобного процесса являлось в свое время гидрирование диизобу-тиленовой фракции с целью получения изооктана  [c.262]

    Деструктивная гидрогенизация — одно- или многоступенчатый каталитический процесс присоединения водорода к молекулам сырья под давлением до 32 МПа, сопровождающийся расщеплением высокомолекулярных компонентов сырья и об-разованием нязкомолекулярных углеводородов, используемых в качестве моторных топлив. В качестве сырья можно использовать бурые и каменные угли, остатки от перегонки коксовых, генераторных и первичных дегтей, смолы от переработки сланцев остаточные продукты переработки нефти (мазут, гудрон, крекинг-остатки), а также тяжелые дистилляты первичной перегонки нефти (350—500 °С) и вторичных процессов (газойли крекингов и коксования) высокосернистую нефть и нефть с высоким содержанием смолисто-ас-фальтеновых веществ. [c.207]

    Широкое применение в современной нефтеперерабатывающей промышленности реакций каталитического превращения углеводородов побудило нас рассмотреть вкратце относящиеся сюда реакции, несмотря на то, что основной темой настоящей работы является гомогенный, пекаталитическиЁ крекинг. Вовсе не рассмотрен крекинг в присутствии водорода (деструктивная гидрогенизация) как совершенно самостоятельная большая тема. [c.6]

    В настоящее время рециркуляция дымовых газов применяется сравнительно редко. На установках деструктивной гидрогенизации, например, для обеспечения мягких и равномерных условий 1агрева специально устанавливают конвекционные печи с рециркуляцией дымовых газов. С той же целью на некоторых установках термического крекинга применяют рециркуляцию дымовых газов, когда реакционный змеевик расположен в кон-векц онной камере. [c.479]

    Продолжите.аьность работы разных катализаторов различна. Так, например, алюмосиликатный катализатор для каталитического крекинга теряет активность через 10—15 мин, а вольфрамовые катализаторы деструктивной гидрогенизации работают 2— [c.218]


Смотреть страницы где упоминается термин Деструктивная гидрогенизация крекинг : [c.55]    [c.118]    [c.126]    [c.241]    [c.7]    [c.7]    [c.171]    [c.265]    [c.208]    [c.121]    [c.121]    [c.122]   
Химия и технология синтетического жидкого топлива и газа (1986) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Деструктивная гидрогенизация



© 2025 chem21.info Реклама на сайте