Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Капли вязкость фаз

    Метод возмущения, согласно Фрелиху и Заку (1946), привел к уравнению (1У.221) для очень разбавленных эмульсий, в которых капли окружены жидкой межфазной пленкой, и к уравнению (IV.206) для эластичной нленки. Для мелких капель оба уравнения дают одинаковые результаты. Это следует также из уравнения (IV.205), показывающего, что деформация капель незначительна, когда Ь(.р мало. На реологических свойствах эмульсий не будет серьезно отражаться реология межфазной нленки, если капли малы и жидкость не циркулирует внутри них. Когда капли велики и окружены вязкой пленкой, они деформируются под влиянием сдвига таким же образом, как и нестабилизированные капли. Вязкость эмульсии будет тогда зависеть от реологических свойств межфазной пленки. [c.293]


    На основании полученных результатов мы сделали попытку объяснить депрессирующее влияние исследуемых катионов. Различные свойства раствора образца могут являться определяющими для скорости распыления и размера капли вязкость, поверхностное натяжение, плотность и др. С изменением этих факторов из-за присутствия сопутствующих элементов может существенно изменяться скорость подачи анализируемого раствора в пламя, полнота испарения образующихся частиц и, следовательно, абсорбция. В связи с этим мы сделали попытку исследовать зависимость вязкости и скорости распыления раствора от концентрации анализируемых солей. С этой целью были сопоставлены данные влияния со значениями вязкости, и скорости распыления анализируемых растворов, показанными в табл. 3.18. [c.186]

    Разрушая поверхностную адсорбционную пленку, деэмульгаторы способствуют слиянию (коалесценции) капелек воды в более крупные капли, которые при отстое эмульсии отделяются быстрее. Этот процесс ускоряется при повышенных температурах (обычно 80—120 °С), так как при этом размягчается адсорбционная пленка и повышается ее растворимость в нефти, увеличивается скорость движения капелек и снижается вязкость нефти, т. е. улучшаются условия для слияния и оседания капель. Следует отметить, что при температурах более 120 °С вязкость нефти меняется мало, поэтому эффект действия деэмульгаторов увеличивается незначительно. [c.9]

    На рис. 1.6 приведена зависимость (Ке/С) / от (Ке С) / для твердой сферы, капли с отношением вязкостей д = 1 и газового пузырька. [c.23]

    Кривая сопротивления для д = 1 разделяет область между линиями для твердой сферы и газового пузырька на 50 100 две части, что позволяет проводить оценочные расчеты при произвольных значениях параметра д. Если необходимо найти более точное значение скорости капли по известному диаметру и заданному отношению вязкостей дисперсной и сплошной фаз, то можно воспользоваться формулами (1.86), (1.89) ирис. 1.5. [c.24]

    Общую систему параметров, от которых зависит сила сопротивления, действующая на частицу, движущуюся в потоке сплошной фазы, в случае капель и пузырей необходимо дополнить введением вязкости дисперсной фазы Дд, от которой зависит подвижность их поверхности. Кроме того, форма капель и пузырьков не является заданной, а формируется в процессе движения. Известно, что она определяется мгновенным балансом силы давления, действующей на поверхность деформируемой частицы со стороны окружающей жидкости и стремящейся сжать ее в направлении движения и силы поверхностного натяжения, препятствующей такому сжатию. Сила давления пропорциональна скоростному напору Рс /2, а сила поверхностного натяжения — капиллярному давлению 2о/с э, где а - поверхностное натяжение. Поэтому система определяющих параметров для силы сопротивления, действующей на капли и пузыри, должна иметь вид (1 ,, р , А<с, А<д, о. [c.39]


    При высоких скоростях истечения капли начинают коалесцировать в непосредственной близости от сопла и при дальнейшем увеличении расхода из сопла начинает вытекать сплошная струя жидкости, которая вследствие возникающих на ее поверхности возмущений дробится на капли. Переход к струйному истечению в системах жидкость—жидкость и жидкость—газ более ярко выражен, чем в системах газ—жидкость и происходит при вполне определенной скорости истечения. Для жидкостей с нормальной вязкостью эту скорость можно определить из соотношения, полученного в работе [89]  [c.57]

    В работе [244] уравнение (4,42) решалось численно при граничных условиях (4.43) и изменении внешнего критерия Рейнольдса, внутреннего модифицированного критерия Пекле и отношения вязкостей внутри и вне капли в диапазонах 1 [c.182]

    При движении капель жидкости в газовой среде лимитирующим сопротивлением для не слишком больших значений коэффициента Генри является сопротивление капли. Однако для очень хорошо растворимых газов (например, для НР) лимитирующим может быть сопротивление сплошной фазы. Поскольку при давлении, близком к атмосферному, отношение вязкостей дисперсной фазы к сплошной порядка 10 , то циркуляцией в капле можно пренебречь и рассматривать каплю, по крайней мере для малых значений Ке, как твердую сферу. [c.204]

    Циркуляцией внутри капли можно пренебречь в случае, когда отношение вязкостей дисперсной и сплошной фаз 1Л =11д/11с 1. Это имеет место для вязких капель в системе жидкость-жидкость и для капель обычной вязкости, обтекаемых газовым потоком. Для систем жидкость-жидкость при малых значениях ц циркуляцию необходимо учитьшать. [c.299]

    Незначительное содержание в керосине воды (легкая муть) очень мало влияет на вязкость, но необходимо следить и во всяком случае быть уверенным в том, что капли воды не пристали к внутренней поверхности трубки истечения. [c.193]

    Есть еще детали, на которых следует остановиться для определения константы прибора прибор следует вымыть после бензина еще 2—3 раза сухим эфиром, и пользоваться другой деревянной палочкой, никогда не употребляемой для оп1.)еделения вязкости масла. Проверяя аппарат по воде, надо следить за тем, чтобы трубка истечения была наполнена водой, но не должно быть висящей капли. [c.254]

    Температура. С повышением температуры уменьшается вязкость нефти, что ускоряет как столкновение и слияние, так и осаждение капель воды. Стабильность пленки, защищающей каплю, также снижается при повышении температуры, во-пер-вых, за счет увеличения растворения и скорости диффузии естественных эмульгаторов в нефти и, во-вторых, за счет снижения вязкости и когезии, т. е. сцепления пленки. С увеличением температуры снижается и расход деэмульгатора. [c.14]

    Капли образуются в отверстиях распределителя, по которому жидкость подается в колонну. Скорость движения капелек диспергированной жидкости относительно стенок колонны зависит от вязкости, разности плотностей [уравнение (4-2)], а также от линейной скорости сплошной фазы. Чтобы получить возможно большую поверхность контакта фаз, в колоннах этого типа следует применять максимальные скорости потока сплошной фазы, так как при этом действительная скорость капелек Шд уменьшается [см. уравнение (4-9)] и вследствие повышенной удерживающей способности улучшается массообмен. Скорость фаз ограничивается пределом захлебывания [16, 32, 136]. Одной из зависимостей для скоростей потоков на границе захлебывания является уравнение [42]  [c.311]

    При малых количествах диспергированной фазы насадка критических размеров обладает свойством крупной насадки, при больших же количествах этой фазы быстро увеличиваются размеры капель. Критические размеры элементов насадки зависят от физикохимических свойств системы, причем наибольшее влияние оказывают межфазное натяжение, силы сцепления и вязкость жидкостей. Для системы толуол—диэтиламин—вода в колоннах диаметром 75, 100 и 150 мм был получен [99] для колец Рашига критический размер 9,5 мм, размер ниже критического 6,35 мм. Кольца диаметром 12,35 19,0 и 25,4 мм представляли собой насадку размерами больше критического, здесь капли сохраняли свои размеры до момента захлебывания. [c.326]

    Смешение реагентов осуществляется либо с помощью механических мешалок, либо в струе в кислый раствор сульфата алюминия подается с высокой скоростью раствор жидкого стекла, что обеспечивает хорошее их смешение. Образовавшийся в результате смешения золь поступает на распределительный конус 2, имеющий ряд продольных желобков, по которым раствор стекает в виде отдельных струек в основной аппарат — формовочную колонну 2. В верхней части колонна заполнена циркулирующим минеральным маслом. Струйки золя с распределительного конуса попадают в масло, где и разбиваются на отдельные капли. Величина капель, определяющая величину готовых гранул катализатора, зависит от диаметра желобков, скорости струек, поверхностного натяжения и вязкости масла. Коагуляция должна протекать за время падения капли через слой масла. [c.178]


    Силы вязкости жидкости стремятся уменьшить интенсивность токов, вызываемых разностью Дст, в результате происходит разрушение поверхности капли (рис. 80). [c.142]

    Оказавшись под действием определенной силы, капля сначала движется ускоренно, так как действующая на нее сила превьппает тормозящую силу трения. По мере повышения скорости движения сила трения все больше увеличивается, и при определенной скорости обе сипы уравновешиваются движение капли становится равномерным. Принимая в первом приближении, что капля имеет сферическую форму, воспользуемся известной формулой Стокса. Согласно этой формуле, установившаяся под действием силы Р и вязкости жидкой среды г равномерная скорость движения и сферической капли радиусом г равна [c.33]

    Подставляя в формулу (10) приведенные выше значения вязкости нефти (14) и плотности воды и нефти (12) и (11), выраженные как функции температуры, получаем общее выражение, характеризующее зависимость скорости оседания в нефти капли пресной воды от температуры [c.43]

    Дисперсная фаза объемная доля, гидродинамическое взаимодействие между каплями, флокуляция вязкость, деформация капель при сдвиге распределение капель по размерам методика приготовления эмульсии, межфазное натяжение, поведение капель при сдвиге, взаимодействие с непрерывной фазой, взаимодействие капель химический состав. [c.12]

    Уг>деводородная капля диаметром до 45 мк будет оставаться устойчивой в воздушном потоке до значительной относительной скорости —60 м/сек [14]. Слияние капель может произойти в том случае,-если расстояние между ними окажется менее 10 диаметров капли. Вязкость,-поверхностное натяжение, плотность топлива и воздушного потока оказывают большое влияние на характер каплеобразования в зоне сгорания двигателя. [c.304]

    При использовании указанных выше формул для расчета скорости нспа рения топлив важным является определение теплофизических констант. Теплоту испарения у, теплоемкость жидкой фазы Ст, давление насыщенного пара Р, следует брать при температуре поверхности капли Тя, коэффициенты диффузии Da и температуропроводности а, кинематическую вязкость V и теплоемкость паров ср.а —при температуре пограничного слоя Гт коэффициеп теплопроводности среды — при температуре воздуха Гв. При высокотемп >а-туриом испарении (7 в>7, ) обычно используют уравнение (3 9в), при Гн Г, применяют формулу (3.29а). Если давление насыщенных паров (Р ) мало по сравнению с давлением окружающей среды (Р), можно пользовать ся уравнением (3.19), [c.109]

    На рис 1.7 приведена зависимость критерил Рейнольдса от критерия Архимеда, построенная по уравнению (1.89) дан твердой сферы, капли с отношением вязкостей I и газового пузырька. Этим графиком также удобно пользоваться для практических расчетов при Ке<500. [c.24]

    При малых значениях М в переходной области между режимом сферических и эллипсоидальных капель и пузырей наблюдается небольшая разница в поведении капель и пузырей. Пузыри имеют более ярко выраженный максимум скорости в точке перехода, чем капли (см. рис. 1.14, б). По-видимому, здесь все же начинает играть роль подвижность поверхности, которая зависит от отношения вязкостей д. Для пузырей это отношение имеет значение, близкое к нулю, в то время как для капель оно составляет величину порядка единицы. В связи с этим затормаживаюшее влияние примесей в случае движения капель сказывается значительно сильнее. На рис. 1.16 в этой области кривые для капель проведены сплошными линиями, а для пузырей — штриховыми. [c.45]

    Значение м - предельной скорости капли в безграничной ясидко-сти — может бьггь рассчитано с помощыо формул, приведенных в гл. 1, а т - функция отношения вязкостей ц =А1д/Мс - представлена авторами [134] в виде графика. В работе [1Я5] получена интерполяционная формула для функции т=т( 1 ), котор 1ая описьшает предложенную в [134] зависимость с погрешностью 3-5 %. Она имеет вид  [c.83]

    Рассматривается конвективный массо- и теплоперенос при малых и средних значениях Ке для случаев обтекания частиц. Циркуляционное движение жидкости внутри капель играет существенную роль при расчете массопередачи в случае лимитирующего сопротивления дисперсной фазы. Для такого режима наблюдается нестационарный характер процесса массопередачи, что при больших значениях Ре приводит к зависимости критерия Шервуда или Нуссельта от критерия Фурье. Внешний массо- и теплообмен при больших Ре стационарен и описывается уравнениями диффузионного пограничного слоя. При исследовании решений этих уравнений показано, что для расчета величины массового потока достаточно знать распределение вихря по поверхности твердой сферы или касательной составляющей эрости по поверхности капли и газового пузырька. Обсуждены гранр цы применимости погранслойных решений при увеличении отношения вязкостей дисперсной и сплошной фаз. Общий случай соизмеримых фaJ0выx сопротивлений описан обобщенной циркуляционной моделью. Закономерности массо-и теплопереноса при лимитирующих сопротивлениях сплошной и дисперсной фаз и общий случай соизмеримых фазовых сопротивлений рассмотрены в разделах 4.2—4.4.  [c.168]

    Массообмен в зоне отрыва можно приближенно рассчитать, вос-пользовавишсь для функции тока в кормовой области сферы разложением типа (4.101). При этом формально считается, что в зоне отрыва образуется диффузионный пограничный слой и что в точке набегания потока со стороны отрывной зоны (точка т = тг) концентрация вещества равна концентрации вдали от сферы. Полный диффузионный поток определяется суммой потоков в пограничных слоях до точки отрыва и в зоне отрьганого течения. Такой приближенный способ учета массообмена в вихревой зоне был применен в работах [281, 286]. Следует однако отметить, что он носит весьма условный характер, так как ввиду наличия циркуляции жидкости в вихревой зоне граничное условие постоянства концентрации вдали от капли для этой области не вьшолняется. На рис. 4.11 кривая/характеризует массообмен твердой сферы. Штриховая часть этой кривой соответствует решению без учета массообмена в зоне отрыва. Заметим, что при фиксированных значениях Ре с изменением Ке от 0,5 до 100 коэффициент массообмена для твердой сферы возрастает примерно в 1,6 раза. На рис. 4.11 приведены также экспериментальные данные Гриффита [287] для капель с отношением вязкостей i =0,38 0,42 и 2,6. Для твердой сферы и капель жидкости в газовом потоке для массо- и теплообмена опытные данные в ряде работ [288-291] обрабатьшались в виде корреляционной зависимости  [c.201]

    Так как отношение вязкостей кашш и газа много больше единицы, то можно пренебречь цирку-лшщей жидкости внутри капли и считать ее твердой сферой. Зависимость коэффициента сопротивления от относительного критерия Рейнольдса [c.254]

    Из рис. 122 видно, что значение числа Вебера в большей степени зависит от скорости потока воздуха и первоначального диаметра капли, чем от вязкости масла МС-20. Так, для капли первоначального медианного диаметра м=270 мкм и скорости потока и=37,5 м/с (седла всасывающего и нагнетательного клапанов компрессора 5КГ 100/13) число Вебера колеблется от 27,2 при /= =60°С к v=96 сСт до 25,5 при повышении температуры масла до 180°С и снижении кинематической вязкости до v=6 сСт. При уменьшении скорости потока воздуха до ы=13,3 м/с (фонарь нагнетательного клапана компрессора 5КГ 100/13) значения чисел Вебера для капель масла МС-20 начального медианного диаметра от 90 до 270 мкм не достигают критического значения Ц7екр=5,35, при котором имеет место нестационарное дробление капель масла в воздушном потоке. [c.290]

    Массопередача при. лимитирующем сопротивлении дисперсной фазы. Коэффициент массопередачи в каплях очень малого диаметра 0,02 см) может быть вычислен по формуле Ньюмена [25]. Формула Ньюмена (11.28) табулпровапа в работе [76] и в монографии [6]. Формула Ньюмена пригодна для расчетов в случае, когда циркуляция в капле полностью заторможена, что имеет место либо при очень малых значениях Не, либо нри высокой вязкости дисперсной фазы (р, 100ч-150). Для капель днаметром к = 0,020,05 мы формула Ньюмена дает несколько заниженные значения. Следует отметить, что рекомендация Трейбала, который предлагал для модели Ньюмена величину критерия Л и = 6,3, является досадным недоразумением. Модель Ньюмена предполагает нестационарный характер процесса и критерий Ки достигает значения 6,3 лишь при Ро 0,1. Вообще значение критерия Ми = 6,3 определяет минимальную скорость массопередачи при отсутствии внешнего сопротивления и постоянстве концентрации переходящего вещества в сплошной фазе. [c.218]

    Первый и второй интегралы в правой части уравнения (7.83) характеризуют соответственно прибыль капель объемом V за счет коалесценции более мелких капель и их убыль вследствие коалесценции капель объемом и с другими каплями. Для определения горизонтальной составляющей скорости движения дисперсной фазы будем рассматривать горизонтальное течение двухфазной смеси как квазигомогенное. Такое допущение справедливо, когда частицы имеют малый размер и отношение вязкостей невелико. Тогда для ламинарного горизонтального потока квазигомогенной смеси по де-кантатору можно использовать решение уравнения Навье—Стокса для ламинарного течения жидкости в открытом канале прямоугозн — ного. сечения при свойствах жидкости, вычисленных через свойства фаз. В этом случае профиль горизонтальной составляющей скорости Ых (г) но высоте канала будет определяться ь/2 [c.301]

    Примем, что вязкость и теплопроводность существенны лишь в процессах взаимодействия между фазами. Аппарат разобьем на две зоны центральная труба и кольцевой канал. В первой зоне (зоне центральной трубы) рассмотрим трехокоростную, трехтемпературную среду. Первая фаза (несущая) — раствор, поднимающийся вверх со скоростью Ui, обладающий температурой Тй вторая фаза — кристаллы, увлекаемые потоком раствора, движущиеся со скоростью U2 и обладающие температурой Т , третья фаза— капли нефти, поднимающиеся вверх со скоростью Оз и обладающие температурой Гз- Функцией распределения по размерам в сечении зоны трубы будем пренебрегать, расчет будем вести относительно среднего размера. С учетом принятых допущений система уравнений (1.62) для описания процесса кристаллизации в зоне центральной трубы приводится к виду (для установившегося режима работы) [c.222]

    Приведенные закономерности справедливы при осаждении твердых частиц. При выпадении из масла капель воды необходимо учитывать вязкость не только масла, но и воды, так как в процессе осаждения форма капель непрерывно меняется за счет микропотоков, возникающих в капле. Тогда скорость осаждения капель равна  [c.143]

    В контактном теплообменном аппарате диспергирование одной из фаз производится при помощи распылителя той или иной конструкции (сопла, перфорированные тарелки и т.п.). На выходе из распылительного устройства происходит дробление струи на множество капель. При этом в барботажном слое создается развитая поверхность контакта фаз. На струю жидкости, вытекающую из отверстия или насадки, действуют силы инерции и гравитации, силы вязкости, поверхностного натяжения, а также турбулентные пульсации в струе и в самой среде. Капли, образующиеся при распаде струи, в процессе движения соударяются между собой п со стенками аппарата. Таким образом, конечная величина частиц диспергируемой фазы определяется суммарным эффектом трех процессов диспергирования, дробления и коалесценции. Определение этой величины расчетным путем пока еще невозможно из-за недостаточной изученности вопроса. Однако для ряда частных случаев решения уже получены и содержатся в работах Колдер-бенка, Фудзияма, Хейфорта и Тройбэла, Сиемса и др. [3]. [c.66]


Смотреть страницы где упоминается термин Капли вязкость фаз: [c.33]    [c.42]    [c.13]    [c.21]    [c.23]    [c.40]    [c.56]    [c.112]    [c.145]    [c.46]    [c.92]    [c.326]    [c.290]    [c.141]    [c.145]    [c.37]   
Эмульсии (1972) -- [ c.257 , c.258 ]

Эмульсии (1972) -- [ c.257 , c.258 ]




ПОИСК





Смотрите так же термины и статьи:

Капли



© 2025 chem21.info Реклама на сайте