Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массоперенос молекулярной диффузией

    О2 и Нг примерно равны и составляют 10- М). По виду эти кривые существенно различаются поляризующие токи 10- А-см-2 приводят для кислородного электрода к АЕ более 300 мВ для водородного электрода соответствующая величина не превыщает 1 мВ. Причем, если увеличить интенсивность перемещивания раствора, то А для водородного электрода станут еще меньше, а на поляризационные характеристики кислородного электрода в выбранном интервале поляризующих токов интенсивность перемешивания практически не влияет. Такие же поляризационные зависимости как у водородного электрода наблюдаются в тех случаях, когда наиболее медленной стадией электродного процесса является перенос электрохимически активных частиц. Он определяется скоростью массопереноса (молекулярная диффузия, конвекция и миграция ионов под влиянием электрического поля в растворе) между толщей раствора и приэлектродным слоем. [c.542]


    В приведенном примере газ, жидкость и катализатор находились в неподвижном состоянии и массоперенос осуществлялся только путем молекулярной диффузии. Молекулярная диффузия в жидкостях даже при повыщенных температурах происходит довольно медленно, поэтому и массоперенос молекулярной диффузией будет медленным. Для ускорения движения реагентов к катализатору и продуктов реакции от него применяют механическое перемешивание и барботаж водорода в жидкости. [c.183]

    Чтобы привести уравнение (16.6) к каноническому уравнению нестационарной молекулярной диффузии, авторы разбираемых ниже. моделей произвольно принимают, что элемент жидкости на межфазной поверхносги остается неподвижным в процессе массопереноса, что позволяет записать уравнение (16,6) в виде  [c.172]

    Расчет экстракционных колонн часто проводят на основе коэффициентов массоотдачи для свободно осаждающихся одиночных капель. Такой метод расчета в наибольшей степени применим к распылитель, ным и тарельчатым колоннам, но на практике используется и для колонн других типов. Коэффициенты массоотдачи как в сплошной, так и в дисперсной фазе зависят от размеров капель. Для мелких капель, ведущих себя подобно жестким сферам, внутри которых массоперенос осуществляется лишь за счет молекулярной диффузии, коэффициенты массоотдачи можно рассчитать по уравнениям [8, 9]  [c.140]

    Таким образом, в граничном слое Прандтля при наличии в нем градиента концентрации массоперенос осуществляется двумя разными параллельно протекающими путями. Суммарная скорость процесса массопереноса определяется скоростью протекания каждого элементарного процесса переноса. Если, однако,торможение одного из этих параллельных процессов значительно меньше торможения другого, то суммарная скорость массопереноса определяется в основном скоростью этого наименее заторможенного, т. е. быстрого, процесса переноса. Скорость конвективного массопереноса в граничном слое Прандтля снижается по мере уменьшения скорости движения V в нем жидкости (см. рис. 143) и его роль в определении суммарной скорости массопереноса тоже уменьшается, а роль молекулярной диффузии возрастает. Начиная с какого-то расстояния от твердой поверхности б молекулярный перенос вещества становится преобладающим по сравнению с конвективным переносом, который преобладает в части слоя Прандтля (77 — б). [c.209]


    Важную роль в технологических процессах играет, как известно, явление массопереноса, т. е. явление переноса массы вещества между двумя фазами. Существует несколько теорий процесса массопереноса через межфазную поверхность. Наибольшее распространение получила пленочно-пенетрационная теория, которая утверждает, что имеет место двойственный механизм диффузии. При малом времени контакта массообмен протекает как ряд неустановившихся процессов диффузии компонента от межфазной поверхности к элементарным вихрям сплошной фазы, соприкасающимся с поверхностью и проникающим в глубь сплошной фазы. При более длительном времени контакта действует механизм молекулярной диффузии через ламинарные пограничные пленки по обе стороны раздела фаз. [c.30]

    Поэтому в каждой фазе различают ядро, т. е. основную часть потока данной фазы, в котором перенос вещества обусловлен главным образом конвективной диффузией, и различают пограничные слои толщиной бо и 6/ , примыкающие в границе раздела фаз . Здесь массоперенос вызывается главным образом молекулярной диффузией, роль которой увеличивается по мере приближения к границе раздела фаз. Толщина пограничного слоя зависит от скорости движения фаз. [c.220]

    Перенос вещества из потока газов к внешней поверхности зерен происходит двумя. способами . нормальной (обычной молекулярной) диффузией и конвекцией. Промышленные процессы проводятся в условиях интенсивного движения реагирующего газа при этом в основной части потока нормальная диффузия играет пренебрежимо малую роль, а благодаря конвекции достигается выравнивание состава по сечению аппарата. Вблизи внешней поверхности зерен создается тонкий слой, внутри которого концентрация реагентов меняется от значений в основном потоке Ср до концентраций на внешней поверхности зерен С , определяемой соотношением скоростей тепло- и массопереноса и химической реакции. Эта область называется диффузионным пограничным слоем. Поток вещества сквозь диффузионный пограничный слой сферического зерна катализатора определяется из уравнения [c.53]

    В каждой фазе различают ядро потока, в котором перенос вещества осуществляется преимущественно за счет конвективной диффузии, и пограничные слои толщиной 5с и 5 , в которых массоперенос происходит в основном за счет молекулярной диффузии (роль которой возрастает при затухании вихрей по мере приближения к границе раздела фаз). Толщина пограничных слоев в первую очередь зависит от скоростей движения взаимодействующих фаз, т. е. от гидродинамического режима в каждой фазе. Поскольку в пограничном слое перенос вещества происходит медленнее, чем в ядре потока, то считают, что основное сопротивление переходу вещества из одной фазы в другую сосредоточено в пограничном слое. [c.32]

    Массоперенос на границе газ—жидкость. В основу механизма массопереноса положено условие, что коэффициент р зависит от коэффициента молекулярной диффузии 1) . [c.38]

    В соответствии с этой моделью в контакт с газом периодически вводится новая поверхность жидкости, а массоперенос вещества внутри жидкости осуществляется только за счет молекулярной диффузии в течение времени /дф — времени обновления, или существования данной поверхности. [c.205]

    Несмотря на то, что теория двух пленок, предложенная Уайтменом— Льюисом, полезна при разработке абсорбционных систем, она заранее предполагает неподвижные пограничные слои и установившийся режим массопереноса, что крайне редко существует в реальных условиях. Так, например, газ стремится разрушить неподвижный слой, и к поверхности жидкости подходит турбулентный поток, тогда как жидкость в поверхностной пленке постоянно заменяется свежей жидкостью снизу. Чтобы исключить проблему диффузии в неустойчивом режиме, в частности, когда взаимодействие газ — жидкость кратковременно, Хигби предложил воображаемую модель, используя уравнение Стефана для молекулярной диффузии в колонне бесконечной высоты. [c.109]

    Критерий Шмидта есть отношение скорости массопереноса, обусловленного транспортом вещества, к скорости молекулярной диффузии.  [c.176]

    Таким образом, при турбулентном движении в ядре потока фазы перенос к границе раздела фаз (или в противоположном направлении) осуи е-ствляется параллельно молекулярной и турбулентной диффузией, причем основная масса вещества переносится посредством турбулентной диффузии. В пограничном же слое скорость переноса лимитируется скоростью молекулярной диффузии. Соответственно для интенсификации массопереноса желательно уменьшать толщину пограничного слоя, повышая степень турбулентности потока, например путем увеличения до некоторого предела скорости фазы. [c.396]


    При переработке полимеров вследствие очень высокой вязкости полимерных расплавов турбулентная диффузия труднодостижима, а молекулярная диффузия совсем незначительна, поскольку она протекает чрезвычайно медленно. Таким образом, преобладающим механизмом смешения остается конвекция. То же справедливо для смешения твердых компонентов, где конвекция — единственно возможный механизм смешения. Следует, однако, отметить, что в том случае, когда один из компонентов — низкомолекулярный продукт (например, некоторые антиоксиданты, вспенивающие агенты, красители для волокон, добавки, улучшающие скольжение), существенный вклад в процесс смешения может внести и молекулярная диффузия. Более того, эффективность применения таких добавок должна зависеть от степени развития молекулярной диффузии. Молекулярная диффузия, естественно, играет важную роль в процессах, связанных с массопереносом, например при дегазации или сушке. Однако в настоящей главе основное внимание уделено системам, где молекулярной диффузией можно пренебречь. [c.182]

    Перенос реагирующих веществ в условиях электрохимической реакции может осуществляться по трем механизмам. Основным механизмом является молекулярная диффузия, т. е. перемещение частиц вещества под действием градиента концентрации. При прохождении через границу электрод — раствор электрического тока концентрация реагирующих веществ у поверхности падает и одновременно растет концентрация продуктов реакции. Возникают градиенты концентрации, которые приводят к диффузии разряжающегося вещества из объема раствора к электроду, а продуктов реакции — от поверхности электрода в объем раствора или в объем металлической фазы (например, при образовании амальгамы в ходе разряда ионов Т1+ на ртутном электроде). Поскольку концентрационные изменения вблизи поверхности электрода всегда сопутствуют протеканию электрохимической реакции, то молекулярная диффузия наблюдается во всех без исключения электродных процессах, тогда как другие механизмы массопереноса могут накладываться на процесс диффузии или же отсутствовать вовсе. Поэтому раздел электрохимической кинетики, в котором рассматриваются закономерности стадии массопереноса, называют диффузионной кинетикой. [c.172]

    В общем случае массоперенос вещества осуществляется молекулярной диффузией, миграцией ионов, естественной или принудительной конвекцией. [c.203]

    Заметим, однако, что в предельном случае Ре - 0 массоперенос к частице определяется только молекулярной диффузией, как в покоящейся жидкости, и в этом случае число Шервуда равно единице (см. гл. 6, где исследуется диффузия при малых числах Пекле). Поэтому можно предложить следующую интерполяционную формулу  [c.108]

    Важнейшие отличительные особенности процесса вытеснения взаиморастворимых жидкостей изменение физических свойств жидкостей в зоне их контакта перемешивание жидкостей в системе пор, возникновение эффекта массопереноса под действием молекулярной диффузии. [c.57]

    Скорость перехода вещества в поверхностный слой велика. Собственно реакция между соляной кислотой н карбонатом, протекающая в поверхностном растворе, т. е. в гомогенной системе, идет практически мгновенно. Наиболее медленными стадиями реакции являются подход свежих количеств соляной кислоты к зоне реакции — поверхности раздела—и отвод продуктов реакции из этой зоны. Скорость этих стадий в статических условиях определяется скоростью молекулярной диффузии, а при движении кислотного раствора относительно твердой породы — интенсивностью массопереноса. Поэтому все, что облегчает процесс переноса свежих порций кислоты к поверхности породы и отвод от нее продуктов реакции, увеличивает скорость реакции растворения породы в кислотном растворе. Все процессы, замедляющие перенос кислоты и продуктов [c.209]

    Массоперенос, происходящий вследствие молекулярной диффузии, протекает более медленно по сравнению с испарением. Концентрация растворенных в воде углеводородов под поверхностным тонким слоем взвеси сразу после разлива нефти возрастает, а затем, спустя несколько часов, быстро уменьшается в результате улетучивания компонентов при испарении. [c.32]

    Гидродинамические особенности турбулентного потока в канале были рассмотрены в гл. 3. Здесь же следует отметить влияние гидродинамических условий на перенос вещества. В пограничном слое толщиной 8 (рис. 15-2) происходит резкое, близкое к линейному изменение концентраций поскольку в этой области потока скорость процесса определяется молекулярной диффузией, роль конвективной диффузии мала. Это объясняется тем, что на границе раздела фаз усиливается тормозящее действие сил трения между фазами и сил поверхностного натяжения на границе жидкой фазы. Образование гидродинамического пограничного слоя вблизи поверхности раздела фаз ведет к возникновению в нем диффузионного пограничного слоя толщиной 5д, обычно не совпадающей с 5 . В ядре потока массоперенос осуществляется в основном турбулентными пульсациями, поэтому концентрация распределяемого вещества в ядре потока практически постоянна. Как отмечалось выше, перенос вещества движущимися частицами, участвующими в турбулентных пульсациях, называют турбулентной диффузией. Перенос вещества турбулентной диффузией описывается уравнением, аналогичным уравнению (15.14а)  [c.16]

    Так как форма и размеры капель при дроблении дисперсной фазы могут быть различными, то соотнощение между молекулярным и конвективным переносом в них может существенно изменяться. Для мелких капель (Ке < 1) преобладающим видом массопереноса является молекулярная диффузия. В этом случае лимитирующим сопротивлением процессу массопереноса будет диффузионное сопротивление внутри капли, и тогда можно принять, что к рд. [c.152]

    Скорость растворения (массопередачи) зависит от превалирующего механизма переноса вещества между жидкой и газообразной фазами. В неподвижной среде основным механизмом массо-переноса является очень медленный процесс молекулярной диффузии. В движущейся среде процесс массопереноса интенсифицируется за счет переноса массы в направлении движения среды (конвекция) в турбулентных потоках добавляется влияние пульсаций, вызывающих турбулентную диффузию. Поэтому в аппаратах для растворения газа в жидкости кроме повышения давления и снижения температуры жидкости применяют интенсивное перемешивание жидкости и газа путем барботажа воздуха через жидкость или с помощью так называемой струйной аэрации [66]. Воздух в жидкость во многих случаях вводится с помощью эжекторов, включенных непосредственно перед барботером или резервуаром для струйной аэрации. Но такая схема существенно снижает экономичность работы установки. [c.239]

    Процесс экстракции обычно осуществляют в условиях циркуляции растворителя вокруг частиц экстрагируемого сырья. При движении растворителя на наружной поверхности частицы происходит ориентация молекул жидкости, так что их подвижность резко снижается по сравнению с подвижностью в толще жидкости. На поверхности частицы возникает пограничный слой мисцеллы, в котором массоперенос происходит лишь за счет молекулярной диффузии. [c.109]

    К первичным факторам относятся направление массопереноса знак с1а отношение коэффициентов молекулярной диффузии [c.210]

    Интенсивный массоперенос в первые секунды существования капли был описан также Гарнером и Лане [841 для капель в газовом потоке. В течение первых нескольких секунд скорость массопереноса в 60—80 раз выше скорости молекулярной диффузии. [c.343]

    На основании пленочной теории, согласно которой имеется линейная зависимость скорости массопередачн от коэффициента молекулярной диффузии, /п = 1. В соответствии же с теорией проникновения, независимо от вида функций распределения возрастов, элементов т — 0,5. Значит, из пенетрационной теории следует, что скорости массопереноса пропорциональны квадратному корню из коэффициента диффузии. Фридландер и Литт [13] при рассмотрении задачи массопереноса от твердой поверхности к ламинарному пограничному слою, при наличии мгновенной реакции, получили уравнение, напоминающее уравнение (5.14). При этом т= /з, чего и следовало ожидать, принимая скорость массопереноса в пограничных слоях пропорциональной величине коэффициента молекулярной диффузии в степени Va- [c.63]

    Как известно, основное влияние на условия возникновения н интенсивность са.мопроизвольной межфазной конвекции при массопереносе оказывают динамическая вязкость и молекулярная диффузия во взаимодействующих фазах, межфазное натяжение системы, концен фашонный уровень и поверхностная активность переносид Ы.ч веществ. [c.52]

    Существование в вязком подслое турбулентных пуЛ1>саи.ий и их постепенное затухание с приближением к межфазной границе имеют принципиальное эваче-, ние для проблемы массопередачн, особенно в тех случаях, когда процесс массо-пгредачи лимитируется переносом в жидкой фазе. Действительно, поскольку а жидкостях коэффициент молекулярной диффузии обычно значительно меньше коэффициента кинематической вязкости, турбулентные пульсации, несмотря на свое достаточно быстрое затухание в вязком подслое, дают заметный вклад в массовый поток вещества к границе раздела фаз. Влияние пульсаций на массоперенос становится пренебрежимо малым лишь в пределах так называемого диффузионного подслоя, толщина которого для жидкостей мала по сравнению. с толщиной вязкого подслоя. Скорость межфазного массообмена существенно зависит от характера изменения эффективного коэффициента турбулентной диффузии Pt вблизи межфазной границы. Если предположить, что функция Dt (у) достаточно хорошо описывается первым членом разложения в ряд Тейлора [c.177]

    Газовая смесь течет по каналам между гранулами катализатора. При этом происходит тепло- и массоперенос между частицами и потоком. В ядре потока массо- и теплообмен осуществляются, главным образом, за счет конвекции, так как поток обычно турбулентный.Вблизи поверхности имеется ламинарный пограничный слой, скорость газа в котором падает до нуля у поверхности гранулы. Транспорт реагентов и продуктов реакции через него в направлении, нохмальном к поверхности, осуществляется путем молекулярной диффузии, а тепла -теплопроводностью. Перенос тепла может происходить также посредством теплопроводности от частицу к частице через поверхность контакта и излучением меаду частшщми. [c.60]

    Моделирование взаимосвязанных процессов тепло- массопереноса в химических реакторах осложняется тем, что физико-химические и кинетические характеристики сред, включая константу скорости химической реакции, зависят от температуры. Однако сопоставление характерных масштабов переноса тепла и вещества в нестационарных условиях, определяемых в рамках модели обновления поверхности, позволяет существенно упростить задачу [12,13]. Характерные значения коэффициентов температурощзоводности жидкостей щ)имерно на два порядка превосходят характерные значения коэффициентов молекулярной диффузии. Поэтому глубина проникновения тепла за промежуток времени, в течение которого элемент жидкости находится у границы ра.здела фаз, значительно превосходит глубину проникновения вещества. Это обстоятельство позволяе г при выводе выражений для источников субсташщй брать значения константы скорости реакции, коэффициента распределения и массоотдачи при температуре на границе раздела фаз. В свою очередь, эту температуру можно определить, записывая закон сохранения тепла в предположении о том, что источник, создающий дополнительный тепловой поток за счет теплового эффекта химической реакции, находится на границе. [c.81]

    Первым и наиболее важным из них является молекулярнаядиффузия. При равновесном потенциале электрода концентрация растворенных веществ во всех точках раствора за пределами двойного электрического слоя одинакова. При пропускании тока вблизи электрода это условие нарушается, так как одни вещества вступают в электродную реакцию, другие образуются в результате реакции. Возникает разница в концентрациях (или точнее в активностях) растворенных веществ вблизи электрода и в объеме раствора, что приводит к диффузии разряжающегося вещества из объема раствора к электроду, а продуктов реакции — от электрода в объем раствора. Так как концентрационные изменения всегда сопутствуют электрохимическому процессу, то молекулярная диффузия происходит во всех электродных реакциях, тогда как другие способы массопереноса могут накладываться на процесс молекулярной диффузии или отсутствовать вовсе. Именно поэтому рассматриваемый раздел называют диффузионной кинетикой. [c.157]

    Перенос компонентов соприкасающихся фаз идет до достижения между ними динамического равновесия. Явления, происходящие при абсорбции на границе раздела фаз, описывают на основе двухпленочной теории Уитмана [42], согласно которой изменение концентраций переходящего вещества происходит в тонких приповерхностных слоях (пленках) газа Рц и конденсированного вещества (рис.5.35). Принимают, что в приграничных пленках конвекция отсутствует, и массоперенос осуществляется исключительно за счет молекулярной диффузии, в то время как перенос из объема газа к пленке и от пленки в объем конденсированной фазы У происходит очень быстро (например, за счет турбулентной диффузии) Поэтому концентрации переходящего компонента у в объеме газовой фазы У , и х в объеме У считаются постоянными. В плёнке газа концентрация переходящего компонента падает до значения у на поверхности радела фаз 8, а пленка конденсированной фазы насыщается до концентрации х , причем сама поверхность 8 не оказывает сопротивления переходу компонента В пленке концентрация снижается до постоянного значения х вследствие распределения компонента в объеме У . Перенос продолжается до достижения равновесия, при котором химические потенциалы переходящего компонента в газовой и конденсированной фазах выравниваются. [c.326]

    На рис. 2.4 представлена модель горения частицы. Горящая частица считается окруженной пофаничной пленкой, в пределах которой происходит догорание СО, а перенос вещества осуществляется за счет молекулярной диффузии. В пределах пленки происходит изменение конценфаций веществ и температуры. В основном потоке, окружающем частицу, протекает интенсивный турбулентный массоперенос. [c.41]

    Процессом растворения управляют, варьируя различными технологическими факторами. Для увеличения скорости растворения можно изменять температурный режим, увеличивать разность концентраций уменьшать вязкость путем измерения гидродинамических условий V предварительно измельчать исходное вещество. Зачастую технологический процесс растворения проводят в реакторах, имеющих рубашку для обогрева паром или охлаждения системы водой или рассолом, и перемешивающее устройство. Перемещивание позволяет перемещать слои жидкости в реакторе, увеличивая разность концентраций и заменяя молекулярную диффузию в жидкой среде на конвектньгй и турбулентный массоперенос. Интенсивное перемешивание уменьшает толщину диффузного пограничного слоя, интенсивный массоперенос способствует быстрому завершению растворения. [c.366]


Смотреть страницы где упоминается термин Массоперенос молекулярной диффузией: [c.106]    [c.186]    [c.151]    [c.223]    [c.268]    [c.210]    [c.164]    [c.148]    [c.148]    [c.148]    [c.512]    [c.126]    [c.340]    [c.277]   
Кинетика и механизм кристаллизации (1971) -- [ c.30 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузия молекулярная

Массоперенос



© 2024 chem21.info Реклама на сайте