Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Установка для выделения HD из водород

Рис. 8.6. Схема процесса гидроочистки нефти совместно с мембранонй установкой для выделения водорода из продувочных (2000 м г) газов [40] /—колонна каталитического рнформинга 2, 3, 4 — аппараты для гндроочистки соответ-ственно нефтн, легкой и тяжелой масляных фракций 5 — мембранная установка 6 — Рис. 8.6. <a href="/info/24358">Схема процесса</a> <a href="/info/938665">гидроочистки нефти</a> совместно с мембранонй установкой для <a href="/info/10559">выделения водорода</a> из продувочных (2000 м г) газов [40] /—<a href="/info/69208">колонна каталитического</a> рнформинга 2, 3, 4 — аппараты для гндроочистки <a href="/info/361966">соответ</a>-<a href="/info/934640">ственно</a> <a href="/info/1568802">нефтн</a>, легкой и <a href="/info/1606757">тяжелой масляных фракций</a> 5 — мембранная установка 6 —

    Для выделения водорода из газов коксования и пиролиза нефти необходимы специальные установки низкотемпературного фракционирования, аналогичные тем, которые применяют при производстве кислорода. Этот метод выгоден, если одновременно выделяют также и другие газы (этилен, этан, ацетилен), которые затем можно перерабатывать. [c.215]

    Натрий довольно широко применяется в качестве теплоносителя в различных энергетических установках. Он обладает достаточно хорошими физическими и теплофизическими свойствами, позволяющими осуществлять интенсивный теплосъем в различных теплообменных аппаратах (теплотворная способность 2180ккал/кг коэффициент теплопроводности, кал (см-с-град), 0,317 при 21 °С и 0,205 при 100 °С). Вместе с тем натрий характеризуется и существенными недостатками. Он обладает высокой химической активностью, благодаря которой он реагирует со многими химическими элементами и соединениями. При его горении выделяется большое количество тепла, что приводит к росту температуры и давления в помещениях. Он обладает большой реакционной способностью [температура горения около 900 °С, температура самовоспламенения в воздухе 330—360 °С, температура самовоспламенения в кислороде 118°С, минимальное содержание кислорода, необходимое для горения, 5 % объема, скорость выгорания 0,7—0,9 кг/ /(м2-мин)]. При сгорании в избытке кислорода образуется перекись NaaOa, которая с легкоокисляющимися веществами (порошками алюминия, серой, углем и др.) реагирует очень энергично, иногда со взрывом. Карбиды щелочных металлов обладают большой химической активностью в атмосфере углекислого и сернистого газов они самовоспламеняются энергично и взаимодействуют с водой со взрывом. Твердая углекислота взрывается с расплавленным натрием при температуре 350 °С. Реакция с водой начинается при температуре —98 °С с выделением водорода. Азотистое соединение NaNa взрывается при температуре, близкой к плавлению. В хлоре и фторе натрий воспламеняется при обычной температуре, с бромом взаимодействует при темпера- [c.115]

    В состав нефтехимических предприятий могут быть включены установки гидродеалкилирования толуола, гидрирования бензола в циклогексан, синтеза капролактама из циклогексана и многие другие, потребляющие водород. Но даже при включении таких процессов не возникает необходимости в производстве специального водорода. В то же время возможны дополнительные источники получения водорода, например каталитическое дегидрирование бутана в изобутилен, дегидрирование последнего с получением бутадиена, деалкилирование толуола в присутствии водяного пара. Хотя полученный водородсодержащий газ нуждается в дальнейшей переработке для выделения водорода (из-за низкой концентрации в нем На), однако в целом нефтехимическое предприятие может иметь от 0,5 до 3% избыточного водорода на перерабатываемое сырье пиролиза. Последний часто используется только как топливо, но в ряде случаев его можно использовать и в переработке нефти. [c.33]


    Стоимость водорода, вырабатываемого на этих установках, сравнима со стоимостью водорода, получаемого конверсией газообразного сырья с паром. Однако вследствие небольших производительностей этот процесс едва ли найдет широкое распространение на нефтеперерабатывающих заводах и, по-видимому, будет использоваться как дополнение к установкам низкотемпературного фракционирования или -абсорбционного выделения водорода. Методы низкотемпературного фракционирования и абсорбции наиболее экономичны при выделении водорода с чистотой 80—95% из сырья со сравнительно низким его содержанием. Диффузионное разделение через палладий более применимо для сырья, содержащего 70—80% водорода, и для получения его чистотой более 99%. [c.113]

    Охлажденный газ поступает далее в скребковые конденсаторы технического хлористого алюминия, где отбирается целевой продукт, а остальные газы направляются на установку выделения четыреххлористого кремния. На этой установке газ промывают водой для улавливания хлористого водорода и частично для разложения хлоридов алюминия и кремния, унесенных из конденсаторов и ловушек, затем газ поступает в аммиачный скруббер для поглощения фосгена и следов хлора и далее сбрасывается в атмосферу. [c.266]

Рис. 114. Схема установки выделения водорода и метана нри помощи абсорбции—фракционирования. Рис. 114. <a href="/info/1337267">Схема установки выделения</a> водорода и метана нри <a href="/info/414930">помощи абсорбции</a>—фракционирования.
    Данные полупромышленных испытаний мембранной установки на основе модулей Призм были использованы при разработке проекта промышленной установки гидроочистки нефти, включающей стадию мембранного выделения водорода, а также при эксплуатации установки (рис. 8.6). Использование мембранной газоразделительной установки на стадии гидроочистки позволило возвратить в цикл до 90% водорода, содержащегося в продувочных газах. [c.281]

    Выделение водорода при помощи молекулярных сит наиболее экономично на установках средней производительности 5,9—11,8 тыс. м 1ч [38]. [c.110]

Таблица 29. Выделение водорода с помощью молекулярных сят (производительность установки по водороду 23,8 тыс. м /ч) Таблица 29. <a href="/info/10559">Выделение водорода</a> с <a href="/info/312451">помощью молекулярных</a> сят (<a href="/info/201691">производительность установки</a> по водороду 23,8 тыс. м /ч)
    Экономия от снижения стоимости сырого бензола не покрывает расходов на сжатие газа при использовании установок малой единичной мощности, оснащенных поршневыми компрессорами. Абсорбция под давлением становится рентабельной, если в дальнейшем коксовый газ используется при повышенном давлении (передача газа в сеть дальнего газоснабжения, фракционная конденсация газа с выделением водорода, использование коксового газа для вдувания в доменные печи). Использование газа при повышенном давлении высокорентабельно на установках большой единичной мощности, оснащенных центробежными компрессорами, и особенно в случае использования газотурбинного привода [21]. Оптимальным давлением, как показано технико-экономическим анализом [22], является 0,8 МПа. [c.154]

    Определенная по этим формулам минимально необходимая работа разделения воздуха с получением чистого кислорода х = 1 и — 0) составляет всего 0,248 МДж на 1 м Оз, в то время как на лучших установках разделения воздуха методом глубокого охлаждения расход энергии составляет 1,8 МДж на 1 м 0 . К. и. д. разделения воздуха методом глубокого холода, таким образом, равен всего 14—20%. Таков же порядок к. и. д. разделения нефтезаводских газов с выделением водорода методом глубокого холода. Выполнение идеального цикла выделения водорода от сопутствующих газов требует технически трудно реализуемых режимных условий. Потери связаны с реальными возможностями технических устройств. [c.46]

Рис. 17. Схема установки для выделения водорода из его смеси с углеводородами методом фракционированной конденсации Рис. 17. <a href="/info/13990">Схема установки</a> для <a href="/info/10559">выделения водорода</a> из его смеси с <a href="/info/54236">углеводородами методом</a> фракционированной конденсации

Рис. 19. Схема установки для выделения водорода с внешним азотным холодильным циклом Рис. 19. <a href="/info/13990">Схема установки</a> для <a href="/info/10559">выделения водорода</a> с внешним азотным холодильным циклом
    Применение очень глубокого охлаждения сырья при помощи искусственно создаваемого холода на нефтеперерабатывающих установках практикуется редко, при ректификации газов (под давлением) для получения индивидуальных углеводородов, например этена, из газов высокотемпературного крекинга и пиролиза или для выделения водорода из газов деструктивной гидрогенизации и др. В частности, для выделения этена требуемое охлаждение может доходить до —100°, для выделения водорода до — 183°. [c.253]

    Установки для выделения водорода короткоцикловой адсорбцией также экономически эффективны. Если на установку поступает газ сжатый до 1,1—4,2 МПа, то дополнительных энергетических затрат на установке нет, и себестоимость водорода определяется в основном стоимостью сырья и амортизационными отчислениями. [c.204]

    Процессы изомеризации ксилолов осуществляют при атмосферном давлении и под давлением водорода. Отличительной особенностью большей части процессов под давлением водорода является возможность изомеризации этилбензола в диметилбензолы. Наиболее экономично проводить процесс изомеризации с целью одновременного получения п- и о-ксилола. В комплексы установок изомеризации включают установки выделения о- и гг-ксилола, а также этилбензола. Достаточно эффективно о-ксилол можно выделять ректификацией для выделения w-ксилола используют процессы низкотемпературной [c.297]

    Следует отметить, что современные установки, строящиеся за рубежом, оборудованы более экономичными процессами очистки технического водорода и выделения водорода из водородсодержащих газов, как например, короткоцикловой адсорбцией и использованием мембранной техники. [c.366]

    Целью работы является сравнение скоростей коррозии технического цинка и химически чистого. Образцы для коррозионных испытаний нарезаются в виде пластинок размером 2 X 25 X 40 ллг из цинка марок Ц0,. Ц1, Ц2, ХЧ. Перед опытом поверхность образцов подвергается механической зачистке и обезжириванию. Скорость коррозии определяется по объему выделившегося водорода на приборе, показанном на рис. 139, Он состоит из газовой бюретки, снабженной в нижней части расширением, внутри которого на крючке или стеклянной подставке устанавливается образец. Бюретка помещается в химический стакан с раствором кислоты и с помощью резиновой груши заполняется этим раствором. После того как вся установка собрана, отмечают время по секундомеру и соответствующее этому начальному моменту положение мениска жидкости в верхней части бюретки. В последующем отсчеты объемов производятся через определенные промежутки времени в течение 1 — 2 ч в зависимости от скорости выделения водорода. [c.251]

    Собрав установку и подготовив электролит, приступают к опыту. Вначале компенсационным методом с каломельным электродом сравнения определяют зависимость к —фк для суммарного процесса разряда ионов железа и водорода. Поляризационную кривую снимают в быстром темпе до достижения интенсивного выделения водорода и образования рыхлых катодных осадков. [c.261]

    Появление пассивируемых коррозионностойких сталей послужило также поводом для разработки анодной защиты. В сильно кислых средах высоколегированные стали, как и углеродистые, практически не поддаются катодной защите, потому что выделение водорода затрудняет необходимое снижение потенциала. Между тем с применением анодной защиты можно пассивировать и удерживать в пассивном состоянии также и высоколегированные стали. Ц. Эделеану на примере насосной системы из хромоникелевой стали в 1950 г. первый показал, что анодная поляризация корпуса насоса и подсоединенных к нему трубопроводов защищает от разъедания концентрированной серной кислотой [33], Неожиданно большая протяженность зоны анодной защиты может быть объяснена высоким сопротивлением поляризации пассивированной стали. Локк и Садбери [34] исследовали различные системы металл — среда, которые могут быть применены для анодной защиты. В 1960 г. в США уже эксплуатировалось несколько установок анодной защиты, например для складских резервуаров-хранилищ, для сосудов-реакторов в установках сульфонирования и нейтрализации. При этом достигалось не только увеличение срока службы аппаратов, но и повышение степени чистоты продукта, В 1961 г. впервые была применена в крупнопромышлен-ных масштабах анодная защита для предотвращения межкристаллитного [c.35]

    В корундовом тигле взвешивают стехиометрические количества порошка СаНг (измельчают в атмосфере азота) и чистого S1. Тигель накрывают перевернутым вторым корундовым тиглем для того, чтобы смесь не разбрызгивалась. Все это устанавливают в трубку из массы Пифагора в атмосфере инертного газа. Нагревание трубки осуществляют с помощью электрической печи. Трубку соединяют с высоковакуумной установкой и путем постоянного откачивания удаляют образующийся в результате реакции водород. Реакцию заканчивают при 1180°С. По окончании выделения водорода нагревание продолжают еще в течение получаса, а затем, сохраняя вакуум, охлаждают. [c.1007]

    Установки. Продувочные газы таких циклических процессов, как синтез аммиака и переработка нефти, содержат жидкости в дисперсном состоянии, поэтому обычно В промышленных установках выделения водорода обязательно предусматривается стадия подготовки газа перед подачей в мембранные аппараты. Температуру процесса поддерживают такой, чтобы, с одной стороны, не допустить конденсацию паров воды на поверхности мембран, а с другой — увеличить скорость массопереноса водорода через мембрану. По мере обеднения исходной смеси водородом увеличивается парциальное давление углеводородов в газе, создаются условия для конденсации части углеводородов на поверхности мембран и, как следствие, увеличивается общее сопротивление процессу переноса. Во избежание этого процесс необходимо проводить при температуре на 10—11° С выше точки росы обедненного водородом газового потока. Однако, на самом деле, выгодно поддерживать более высокую температуру, так как это увеличивает производительность установки (повышением коэффициента скорости массопереноса через мембрану). Влияние температуры на скорость переноса водорода через полимерную мембрану (на примере асимметричной ацетатцеллю-лозной мембраны) представлено на рис. 8.1 [32]. [c.273]

Таблица 8.4. Параметры работы двухступенчатой установки выделения водорода из прпдувочных газов синтеза аммиака [30] Таблица 8.4. <a href="/info/1470170">Параметры работы</a> двухступенчатой установки выделения водорода из прпдувочных <a href="/info/315680">газов синтеза</a> аммиака [30]
    В-ка честве абсорбента в колонке 7 используется ацетон. Темле-рат)фа верха абсорбера поддерживается равной минус 98 °С для предотвращения уноса ацетона с сухим газом. Ацетон регенериру-ется в десорбере 8. Целевыми фракциями установки являются этиленовая и пропиленовая франции метано-водородная фракция используется в качестве топлива или направляется ща выделение водорода этановая и щропановая фракции возвращаются на пиролиз этиленовая фракция направляется на химическую переработку, а фракция 2С4 и выше разделяется в дальнейшем на фракции С4 и С5. [c.297]

    При абсорбционном методе можно использовать более низкое давление и более высокие температуры. Газовая смесь под давлением в противотоке контактирует с поглотительным маслом, в котором растворяются все углеводороды, имеющие 2 и более атомов углерода. Метан и водород при этом не абсорбируются и выводятся с установки. Затем газообразные углеводороды выделяются из поглотительного масла и разделяются ректификацией, что после удаления водорода и метана не представляет значительных трудностей. Освобожденное от газообразных углеводородов поглотительное масло возвращается на установку. Выделение газов из поглотительного масла можно провести таким образом, что при этом уже будет иметь место разделение на фракции с определенным числом атомов углерода. Дальнейшее разделение на отдельные компоненты путем перегонки не представляет труда. Часто получаемая при фракционировании чистота уже достаточна для последующей переработки. Абсорбционный метод обладает большими достоинствами для концентрпрования газов с небольшим содержанием олефиновых углеводородов. [c.45]

    Мембраны. Первые инженерные разработки по извлечению водорода с помощью металлических мембран на основе сплзеов палладия начаты 15—20 лет назад. Процесс выделения водорода предлагали проводить при температурах от 673 до 900 К в одну 19] или две ступени [10, II]. Степень регенерации водорода достигает 90% (одноступенчатое разделение при давлении исходного газа 15 МПа и давлении пермеата 0,2—0,3 МПа) и 98,5% при двухстадийном процессе (давление в напорном канале до 45 МПа, давление пермеата I ступени — 3—7 МПа, II ступени — атмосферное). Одно из достоинств металлических мембран — возможность получения водорода, практически не содержащего примесей. Так, применение мембран на основе сплава палладия с серебром в установках каскадного типа английской фирмы Джонсон Маттей Металс [12] позволило получить пермеат, содержащий 99,99995% (о б.) Иг- Отметим, что для. .этого необходимо, чтобы концентрация водорода в исходной смеси была не менее 99% (об.) Н2. Процесс проводится при температуре 550— 600 К под давлением х2, МПа. Производительность установки от 14 до 56 м ч высококонцентрированного водорода. Однако в промышленности металлические мембраны на основе палладия и его сплавов используются редко, в основном из-за дефицитности и высокой стоимости мембран, необратимого отравления палладия, необходимости поддержания высоких температ ур. [c.272]

    Наи большее промышленное применение для выделения водорода получили установки фирмы Монсанто , разработанные и внедренные в 70—80-х годах [30, 31, 33—35] на основе мембраниого модуля с полыми волокнами Призм (рис. 8.4). Мембрана, применяемая в этих модулях, представляет собой асимметричное полое волокно на основе полисульфона, на внешнюю поверхность которого нанесен тонкий диффузионный слой из пол1иорганосило1ксана, обладающего высокой газопроницаемостью, но сравнительно низкой селективностью. [c.277]

    Мембранная установка включает 12 мембранных аппаратов, каждый из которых имеет внутренний диаметр 0,1 м и длину 3,0 м, и смонтирована на площади около 60 М-. Продувочные газы, содержащие после стадии синтеза и конденсации около 2% (об.) аммиака, под давлением 14 МПа направляют в скруббер водной промывки для окончательного улавливания КНз. Газовая смесь, очищенная от аммиака и содержащая 62,3% (об.) водорода, 20,9% (об.) азота, 10,4%, (об.) метана и 6,4% (об.) аргона, проходит через 8 последовательно установленных аппаратов I ступени очистки. Пермеат I ступени, содержащий 87,3% (об.) водорода, под давлением 7,0 МПа подают на вторую ступень компрессора свежей азотоводородной смеси и возвращают в производство. Ретант после I ступени разделения направляют на 4 последовательно расположенных мембранных аппарата П ступени. Обогащенный до 84,8% (об.) по водороду газовый поток под давлением 2,5 МПа возвращают на I ступень компрессора свежего газа и далее в цикл. Суммарная степень выделения водорода—87,6%. Обедненный водородом [г=20,8% (об.) И,] ретант после И ступени установки сжигают в трубчатой печи конверсии углеводородов. Работу установки хорошо иллюстрирует табл, 8.4. [c.278]

    Принципиальная схема мембранной установки с рулюнными элементами Сепарекс для выделения водорода из продувочных газов синтеза изобутана [41, 44] изображена на рис. 8.9. В процессе, названном Бутамер , нормальный бутан в блоке синтеза подвергают каталитической изомеризации (в среде водорода с добавлением органических соединений хлора) с получением изобутана. Одновременно с целевым продуктом образуются пары H I. Поэтому продувочные газы перед подачей на /мембранную установку подвергают щелочной очистке от НС1. Пермеат, обогащенный водородом, после компримирования возвращают в блок синтеза, а ретант после выделения углеводородов Сз—Сп в качестве топливного газа отправляют на сжигание. Результаты испытаний [41] представлены в табл. 8.6. [c.284]

    Интересно сравнить мембранный способ выделения водорода из продувочных газов с традиционными криогенным и адсорбционным (короткоцикловым безнагревным) методами [45, 46]. Оказывается, что капитальные вложения в мембранную и криогенную установку примерно одинаковы [45], однако эксплуатационные затраты на мембранный процесс существенно ниже, причем определяются они рядом преимуществ новой технологии разделения процесс проводится при температуре окружающей среды, проще и существенно менее продолжительны периоды [c.284]

    Хотя методы внутреннего теплоотвода достаточно экономичны и позволяют достигать весьма низких температур при относительно небольших поверхностях теплообмена и разделят1> 1ааы при низких давлениях, системы, использующие охлаждение расширением в чистом виде, страдают от через-чур тесного блокирования отдельных их частей. При фракционировке воздуха, когда состав сырья не изменяется, агрегаты глубокого холода работают гладко, как только наладится правильный режим. В случае же переработки нефтезаводских н природных газов состав сырья изменяется не только в период пуска, но и в процессе эксплуатации и система должна обладать большей гибкостью, чем это доступно п типичных способах Клода-Линде. Установки Глубокого холода типа Клода-Лппде широко применяются в Европе для выделения водорода из коксового газа водород получается на них в виде сравнительно дешевого побочного продукта. [c.165]

    Метан. Метан отходящих газов гидрогенизационных заводов в Гельзенкирхене и Шольвене перерабатывался на ацетилен электрокрекингом в Хюльсе. Общая продукция ацетилена превышала здесь 40 ООО т в год. Большая часть этого ацетилена перерабатывалась через уксусный альдегид, алдоль в дивинил. Но здесь же находилась и установка по гидрированию ацетилена в этилен над палладием на силикагеле, установка по выделению водорода глубоким холодом и др. В дуге напряжением в 7 ООО в получается ацетилен чистотой 97—98%. Его приходится подвергать весьма сложной очистке. Помимо водорода, окиси углерода и этнлена, такой ацетилен содержит следующие иримеси (вгр на 1 м ) H N 1—3, нафталина 1—3, бензола 1—6, диацетилена 15—20, сажи 20—25. Однако при этом процессе себестоимость ацетилена меньше, чем генерируемого из карбида кальцпя. [c.167]

    Как видно из таблицы, удельные канитальные вложения в установку для выделения водорода методом глубокого охлаждения в несколько раз ниже, чем при производстве На паровой каталитической конверсией углеводородов. Основной статьей затрат здесь является. [c.203]

    Для выделения водорода и метана из очищенного газа пиролиза на современных установках используется низкотемпературная ректификация под давлением. Коэффиг.иент относительной летучести ключевой пары компонентов метан — этилен, как следует из табл. 9.4, достаточно высок, поэтому метановая колонна имеет 30 тарелок. Деэтанизация — выделение этан-этиленовой фракции (ключевые компоненты этан и пропилен) осуществляется также сравнительно легко в колоннах, имеющих 40 тарелок. [c.172]

    Для определения величины электродной поляризации и снятия поляризационных кривых применяют электролизеры самых различных конструкций. На рис. 85 приведена схема установки, применявшейся для изучения поляризации при выделении водорода на ртутном катоде. Прибор состоит из трех основных частей электролитической ячейки 6, трубки 5 для ампулы с раствором и трубки 4 для ампулы с ртутью, спаянных в одно целое. Тижняя расширенная часть электролитической ячейки предназначена для ртути, служащей катодом. Анодом служит платинированная платина. Анод вставляется на шлифе в часть /, которая отделена от катодного пространства краном 3, препятствующим диффузии продуктов электролиза из анодного пространства. [c.248]

    Линии I — пропан II — кислород III — NaOH IV — вода V — рассол VI — СНзСНО VII — водород VIII — пар IX — гептан X — СНзОН XI — к вакуум-насосу XII — в колонну г XIII — тяжелые хвосты XIV — концентрированный формалин XV — на установку выделения углеводорода. [c.311]

    Подобная же установка может служить и для выделения водорода, ио в этом случае в дополнение к колонне 5 устаиавливается новая колонна глубокого холода, в которой должны быть сконденсированы метан, азот и окись углерода. В ней приходится применять уже не этеновое охлаждение, а кипящий метан пли азот (метановый ипи азотный циклы). [c.345]

    Особое место в электрогравиметрии занимает электролиз на ртутном катоде большое перенапряжение выделения водорода на ртути позволяет выделить на ней многие металлы Чаще ртутные злектродн используются для количественного разделения металлов,а не их определения, Электрогравиметрический анализ можно проводить на установке без внешнего источника тока - это так называемый внутренний элект-ролизгна катоде происходит выделение металла,в то время как анод подвергается электрохимическому растворению, [c.45]

    Среди металлогидридов имеют место как экзотермические гидриды, выделяющие водород при подводе к ним тепла, так и эндотермические, выделяющие водород при условии их охлаждения. Первые являются более целесообразными для применения в транспортных энергоустановках с ДВС, поскольку для выделения водорода из них может быть использована энергия, выносимая в систему охлаждения двигателя, и энергия ОГ. Применение эндотермических гидридов потребовало бы установки дополнительной системы охлаждения с соответствующим энергопотреблением. Гидриды РеИ—На МёаСи—Нд Mg2Ni— Н4 и Mg—На как наиболее перспективные для транспортных энергетических установок с ДВС относятся к экзотермической группе, поэтому целесообразно провести анализ энергетического баланса на базе этих гидридов. Для низкотемпературного гидрида РеТ1—На может быть использована как энергия, выносимая в систему охлаждения, так и энергия ОГ, а для высокотемпературных гидридов — только энергия ОГ, так как изотерма равновесного давления водорода над гидридом, соответствующая 1,5 МПа, находится в пределах 250—ЗОО °С. В общем виде энергобаланс автомобильной энергоустановки с гидридным аккумулятором водорода может быть представлен таким образом  [c.87]

    Электролиз воды с выделением водорода и кислорода получил большое развитие в первой половине XX столетия в странах, богатых пщроэлектроэнер-гией, для производства ссштетического аммиака и метанола. Так, например, в скандинавских странах, Италии, СССР были созданы установки по электролизу воды. Однако в последние десятилетия для производств, потребляющих водород в больших количествах (производство синтетического аммиака), водород получают из природного газа и углеродсодержащего сырья [4]. [c.9]

    Авторы [18] предлагают метод определения водорода в гидриде тнтана, основанный на термическом разложении исследуемого образца гидрида, десорбции водорода из цеолитов и его измерении. Разложение проводят в вакууме при непрерывной откачке водорода цеолнтовыми насосами при —196° С. Сорбционная способность применяемых цеолита 4А и активированных углей СКТ, БАУ была установлена на основании снятых изотерм адсорбции водорода при температуре жидкого азота. В предварительно прокаленный кварцевый стаканчик берут навеску гидрида тнтана 0,3—0,5 г и помещают в реакционную пробирку, подсоединяемую к установке. После достижения в системе вакуума 3-10- мм рт. ст. замеряют нулевой тоовень ртути в манометре, цеолитовые насосы погружают в сосуд Дьюара с жидким азотом и на реакционную пробирку надвигают печь при рабочей температуре 1000° С. Поглощение выделяющегося водорода ведут последовательно подключающимися цеолитовыми насосами (шесть насосов). По неизменности нулевого уровня ртути на протяжении 3 мин судят об окончании реакции выделения водорода из исследуемого образца. После этого убирают сосуд с жидким азотом и струей сжатого воздуха нагревают цеолитовые насосы до комнатной температуры и измеряют давление выделившегося водорода. [c.27]


Смотреть страницы где упоминается термин Установка для выделения HD из водород: [c.278]    [c.271]    [c.481]    [c.50]    [c.186]    [c.823]    [c.63]    [c.30]    [c.192]   
Техника низких температур (1962) -- [ c.105 , c.106 ]




ПОИСК





Смотрите так же термины и статьи:

Криогенные установки для выделения окиси углерода и водорода

Схемы промышленных установок для выделения дейтерия методом ректификации водорода

Установка водорода

Установки выделения



© 2025 chem21.info Реклама на сайте