Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нефтепродукты селективная

    Обзор работ (смЛ ) по гидроочистке с использованием катализатора -Ь N1 + 8. В процессе гидроочистки светлых нефтепродуктов селективно удаляется (Ю— 70% серы (при ее начальном содержании 0,4—1,5%) без крекинга, полимеризации и заметного гидрирования ароматических углеводородов. Гидрогенизация диенов проходит полностью, моноолефинов — не полностью. Срок службы катализатора до регенерации [c.52]


    Очистка избирательными растворителями, получившая распространение в последние годы, применяется в основном для обработки масел и светлых нефтепродуктов. Селективные растворители не смешиваются с нефтепродуктом, но растворяют примеси смолистых, сернистых, непредельных соединений, нафтеновых кислот и др., извлекая их таким образом из очищаемого нефтепродукта. В качестве таких растворителей применяются фурфурол, фенолы, жидкий сернистый ангидрид, нитробензол и другие вещества. [c.55]

    На рис. 52 очень упрощенно показана схема установки для очистки нефтепродуктов селективными растворителями, в частности 50г. Аналогичный способ применяется для очистки смазочных масел. [c.137]

    При такой очистке расходуются значительные количества серной кислоты и щелочи поэтому изыскиваются другие способы очистки. Особенно перспективна очистка селективными растворителями. По способу Грефе смоляные масла могут быть экстрагированы противоточной промывкой спиртом. В полученном экстракте содержится 60—80% креозота. Селективной очисткой является и экстракция жидким ЗОз по Эделеану (на стр. 137 процесс описан применительно к очистке нефтепродуктов). Селективные растворители уже давно применяются в широком масштабе для очистки смазочных масел например, в США недавно стали применять для этой цели фурфурол. [c.70]

    Производство ароматических углеводородов из нефтепродуктов селективная очистка-масел, производство парафина, сажи, пиробензола Добыча озокерита, гумбрина, барита Очистка нефти и газа от сероводорода, производство ингибиторов, водорода, катализаторов, экстракционно-озокеритовое производство Очистка нефтеналивных судов, цистерн и резервуаров, ремонт клапанов цистерн. [c.66]

    Производство озона и производства, связанные с его выделением Производство гидразина и его соединений Производство и применение аминов жирного ряда Производство и применение никотина Добыча многосернистой нефти и газа и переработка многосернистой нефти Производство ароматических углеводородов из нефтепродуктов селективная очистка масел, производство парафина, сажи, пиробензола Добыча озокерита, гумбрина, барита Очистка нефти и газа от сероводорода, производство ингибиторов, водорода, катализаторов, экстракционно-озокеритовое производство [c.65]

    Производство ароматических углеводородов из нефтепродуктов селективная очистка масел, произ- [c.357]


    Гидрокаталитическая депарафинизация предназначена для снижения температуры застывания нефтепродуктов, прежде всего дизельных топлив и смазочных масел. Снижение температуры застывания нефтепродуктов достигается путем селективного гидрокрекинга и гидроизомеризации нормальных парафиновых углеводородов на специально разработанных селективных катализаторах. [c.269]

    Нефтяные фракции, полученные при прямой перегонке нефти, содержат различные количества нежелательных примесей и поэтому зачастую требуют дополнительной очистки при помощи химических методов. Некоторые классы соединений могут рассматриваться в качестве примесей или нежелательных компонентов только для определенных фракций. Так, ароматические углеводороды желательны в бензине, но нежелательны в керосине. Другие классы соединений следует считать примесями пли нежелательными компонентами для всех нефтепродуктов. Сюда в первую очередь относятся легко окисляемые и вообще химически нестабильные соединения, а также смолистые или асфальтеновые вещества. Вредными, как правило, являются сернистые соединения, и их предельно допустимое содержание обычно строго ограничивается техническими нормами на нефтепродукты. В тех случаях, когда очистка нефтепродукта от примесей или нежелательных компонентов недостижима обычными физическими методами, прибегают к химическим методам очистки при помощи различных реагентов, которые селективно реагируют с веществами, подлежащими удалению. [c.222]

    В качестве реагентов для химической очистки нефтепродуктов был испробован целый ряд веществ, но лишь немногие из них выдержали испытание временем и нефтезаводской практикой. Наиболее прочно утвердились лишь серная кислота (предложенная для очистки нефтепродуктов еще в 1855 г. [1]), водные растворы щелочей и еще несколько веществ, применяемых для нейтрализации активных сернистых соединений. За последние годы в производстве смазочных масел сернокислотная очистка все больше вытесняется селективной и контактной очисткой. Для очистки более глубокой, чем та, которая достигается нри сернокислотном методе, был применен безводный хлористый алюминий. Гидрогенизационный метод очистки от серы и улучшения качества нефтепродуктов был разработан еще в 1930 г., однако широкое внедрение этого метода в промышленную практику началось примерно в 1955 г., когда появился доступный и дешевый водород с установок каталитического риформинга. [c.222]

    Со времени существования нефтеперерабатывающей промышленности множество химических веществ подвергалось испытанию на предмет их пригодности для очистки нефтепродуктов. В этом отношении наиболее интересны те химические соединения, которые активно реагируют с нестабильными углеводородами, подлежащими удалению из нефтепродукта. В большинстве случаев испытывавшиеся вещества оказывались непригодными для применения, так как они не обнаруживали достаточной селективности и реагировали также и с ценными компонентами очищаемого нефтепродукта. [c.238]

    В следующем параграфе рассматривается применение хлора в виде гипохлорита для очистки от активной серы. В ходе разработки этого процесса больших трудов стоило найти способы предотвращения прямого хлорирования. Так как качества большинства нефтепродуктов при длительном хранении ухудшаются в результате окисления, то были предприняты попытки очищать нефтепродукты от нестабильных компонентов путем селективного их окисления. Для этой цели были испробованы кислород, озон и даже азотная кислота, но должной селективности окисления не удалось добиться. Реакция формальдегида и серной кислоты с ненасыщенными циклическими углеводородами [75—80, 98], когда-то считалась перспективной, но и она не получила промышленного применения. [c.238]

    Перечень соединений, которые предлагались в качестве селективных растворителей для очистки нефтепродуктов, очень велик и включает в себя органические сложные эфиры, спирты, альде- [c.280]

    Требования к каталитическим процессам в значительной степени определяются составом и характеристиками углеводородного сырья (его плотностью, содержанием в нем светлых нефтепродуктов, серы, азота, тяжелых металлов), а также активностью и селективностью используемых катализаторов. Режимы современных установок каталитического крекинга отличаются высокими температурами процесса и скоростями подачи сырья, повышенными давлениями в реакторном блоке. [c.4]

    Растворами щелочей можно экстрагировать из нефтепродуктов и слабокислотные соединения, например тиолы [57]. На практике этот способ применяется очень редко, так как не выдерживает конкуренции с иными, более эффективными и селективными методами. [c.10]

    При этом промышленность обеспечивала непрерывное повышение качества вып. скаемых нефтепродуктов. Так, производство высокооктанового бензина (А-76, АИ-93) достигло 80% от общего его выпуска. Выпуск бензина А-66 прекращен с 1970 г., стоит вопрос о снятии с производства бензина А-72. Доля малосернистого дизельного топлива от его общего выпуска достигла 95%. Однако несмотря на существенное повышение качества нефтепродуктов, надо признаться, в настоящее время мы уступаем лучшим мировым достижениям по качеству ряда нефтепродуктов и продукции нефтехимии, а также по таким важнейшим технико-экономическим показателям, как металлоемкость, энергозатраты, занимаемая площадь, по уровню автоматизации производства, численности персонала и др. Причем даже разработанные и введенные в последние годы высокопроизводительные процессы и каталитические системы существенно уступают по этим показателям лучшим зарубежным аналогам. Неудовлетворительно обстоит дело на НПЗ и в отношении отбора светлых нефтепродуктов от потенциала, что приводит к значительному недобору дизельных фракций на атмосферных колоннах. Отечественные катализаторы значительно уступают зарубежным аналогам по активности, стабильности, селективности и другим показателям. [c.25]


    Б качестве высоковязких компонентов трансмиссионных масел могут использоваться остаточные масла, экстракты селективной очистки масел и другие высоковязкие продукты, не обладающие структурной вязкостью при низких температурах. Особенно большой эффект можно получить, если в качестве высоковязкого компонента использовать осерненные нефтепродукты высокой вязкости (трансмиссионное автотракторное летнее, вапор, экстракты). [c.431]

    Абсорбционные методы очистки заключаются в избирательном (селективном) растворении вредных компонентов нефтепродуктов. В качестве избирательных растворителей используются нитробензол, фурфурол, жидкий диоксид серы, дихлорэтиловый эфир и др. [c.71]

    Последний частично в виде димера содержится в продуктах коксования каменного угля, а также во фракциях С, пиролиза нефтепродуктов, где его концентрация обычно составляет 10—20%. Для выделения ЦПД из С-фракции его вначале полностью димеризуют, нагревая всю смесь до 80—110 °С в течение 3—4 ч, после чего димер выделяют ректификацией и вновь превращают в мономер пиролизом при 200—400 °С. Гидрирование ЦПД до циклопентена осуществляется в присутствии катализаторов, представляющих собой металлы У1П группы (главным образом N1, а также Рё, Ни и КЬ), на носителе или без него при атмосферном давлении и умеренной температуре (до 50—70 °С). При этом может быть достигнута селективность, близкая к теоретической. Суммарная схема превращений ЦПД выглядит таким образом  [c.386]

    При гидроочистке и гидростабилизации продуктов вторичного происхождения расход водорода на реакцию значительно больше, чем для прямогонных дистиллятов. Водород здесь дополнительно расходуется на гидрирование диеновых углеводородов при селективной очистке и на гидрирование моноолефинов при глубокой очистке. Расход водорода на гидроочистку некоторых нефтепродуктов вторичного происхождения [9, 10] следующий  [c.15]

Рис. 52. Работа установки для очисткг . нефтепродуктов селективными растворителями (например ЗОг, по Эделеану) Рис. 52. <a href="/info/26138">Работа установки</a> для очисткг . нефтепродуктов селективными растворителями (например ЗОг, по Эделеану)
    После выхода в свет учебников Технология переработки не( >ти и газа в трех частях (часть 1, Гуреев И.Л. часть 2, Смидович Е.В часть 3, Черножуков Н.И.) прошло более 20 лет. За это время отечественная и мировая нефтепереработка претерпела значи — тел).ные изменения появились новые высокопроизводительные технологические процессы, в т.ч. процессы глубокой переработки нефтяных остатков широкое применение получили комбинированные технологические установки разработаны и внедрены новые активные и селективные катализаторы возникли новые акологи — ческие требования к качеству нефтепродуктов в области рационального использования нефтепродуктов возникла новая отрасль знаний, названная химмотологией значительно расширились тео— ретические представления по физико-химической сущности не — фтегехнологических процессов изменились государственный и поллтический строй бывшего СССР. В этой связи возникла необходимость подготовки нового учебного пособия, отражающего современный научно-технический уровень развития мировой и отечественной нефтепереработки. [c.7]

    Однако несмотря на существенное повышение качества нефтепродуктов надо отметить, в настоящее время мы уступаем лучшим мировым достижениям по качеству ряда нефтепродуктов и продукции нефтехимии, а также по таким важнейшим технико — экономическим показателям процессов, как металлоемкость, энер — гозатраты, занимаемая площадь, по уровню автоматизации произ — водства, численности персонала и др. Причем даже разработанные и внедренные в последние годы высокопроизводительные процессы и каталитические системы существенно уступают по этим показа — телям лучшим зарубежным аналогам. Неудовлетворительно обстоит дело на НПЗ и в отношении отбора светлых нефтепродуктов от потенциала, что приводит к значительному недобору дизельных фракций на атмосферных колоннах. Отечественные катализаторы значительно уступают зарубежным аналогам по активности, стабильности, селективности и другим показателям. [c.288]

Рис. 6. Продукты, получаемые на установках АВТ, и пути их использования г / — вторичная перегонка, гидроформинг 2 — пиролиз, производство ароматических углеводородов 3 — депарафиннзация, компаундирование 4 — компаундирование керосина, гидроочистка 5 — депарафиннзация, пиролиз 6 — каталитический крекинг 7. 8, 9, 10 — селективные очистки дистиллятных масел депарафиннзация карбамидом, адсорбционная очистка //—I3 — производство кокса, котельного топлива, сортовых мазутов /4 — переработка газа полученне сырья для нефтехимических производств 15—17 — деасфальтизация, производство кокса, термический крекинг. /—V — компоненты светлых нефтепродуктов (°С) н. к.— 62. 62—85, 85—105, 105—120, 120—140, 140—240, 240—300, 300—350 V/— мазут, >350 V//— газ V///— гудрон, >500 /Х—Х///— вакуумные фракции ("С) 350—400, 400—420, 420—490 (500) >490 (500). Рис. 6. Продукты, получаемые на установках АВТ, и пути их использования г / — <a href="/info/309778">вторичная перегонка</a>, гидроформинг 2 — пиролиз, <a href="/info/404901">производство ароматических углеводородов</a> 3 — депарафиннзация, компаундирование 4 — компаундирование керосина, гидроочистка 5 — депарафиннзация, пиролиз 6 — <a href="/info/25178">каталитический крекинг</a> 7. 8, 9, 10 — <a href="/info/63444">селективные очистки</a> дистиллятных масел депарафиннзация карбамидом, <a href="/info/310106">адсорбционная очистка</a> //—I3 — <a href="/info/652480">производство кокса</a>, <a href="/info/80857">котельного топлива</a>, сортовых мазутов /4 — <a href="/info/1619770">переработка газа полученне</a> сырья для <a href="/info/1469975">нефтехимических производств</a> 15—17 — деасфальтизация, <a href="/info/652480">производство кокса</a>, <a href="/info/66231">термический крекинг</a>. /—V — <a href="/info/1455545">компоненты светлых нефтепродуктов</a> (°С) н. к.— 62. 62—85, 85—105, 105—120, 120—140, 140—240, 240—300, 300—350 V/— мазут, >350 V//— газ V///— гудрон, >500 /Х—Х///— вакуумные фракции ("С) 350—400, 400—420, 420—490 (500) >490 (500).
    Применяемые на современных нефтеперерабатывающих заводах процессы очистки весьма разнообразны. При очистке ряда нефтепродуктов, особенно смазочных масел, для достижения требуемых свойств применяют не один, а ряд последовательных процессов, каждый из которых предназначен для удаления определенной группы примесей. Например, при деасфальтиза-ции удаляют смолистые и асфальтовые соединения селективная очистка обеспечивает удаление смол и части ароматических углеводородов при депарафинизации выделяют из продуктов твердые парафины очистка глинами улучшает цвет масла и т. д. [c.91]

    В первом издании пастояш ей книги (1928 г.) излагались научные и технические основы нефтепереработки, которая к этому времени мало изменилась с момента своего возникновения в 1855 г., когда В. Силлимэн впервые онисал свойства важнейших нефтепродуктов и методы их получения. При подготовке второго издания (1942 г.) книга практически была написана заново, так как нефтеперерабатывающая промышленность претерпела существенные качественные изменения основу ее к этому времени составляли термический крекинг и разделение углеводородов с помощью селективных растворителей. [c.8]

    Недеструктивные процессы применяются также и при селективном гидрировании олефинов в бензинах каталитического крекинга. Одновременно гидрирование влечет за собой и очистку нефтепродуктов от серы, азота и кислорода. Они удаляются из нефтепродуктов в виде таких соединений, как сероводород, аммиак и вода. Сущность изл1енений, происходящих ири недеструктивном гидрировании бензина каталитического крекинга, демонстрируется в табл. П-6 [203—205]. [c.94]

    Позднее были разработаны другие методы обеспечения антиокислительной стабильности, которые, будучи вполне приемлемыми с практической точки зрения, в то же время не сопровождались потерями нефтепродукта. Как уже говорилось выше, очистка при помош и селективных растворителей вытеснила сернокислотную очистку в производстве смазочных масел. Появились также методы получения товарных керосинов из высокоароматизиров ан-ных фракций, что не всегда удавалось при сернокислотном методе очистки. Обработка серной кислотой сохранилась как метод очистки для высококипяш,их фракций крекинг-бензинов, для керосинов парафинистого основания, для дешевых разновидностей смазочных масел и для получения специальных видов нефтепродуктов, таких как инсектицидные лигроины, медицинские белые масла и электроизоляционные масла. Важное значение имеет также производство сульфокислот из масляных дистиллятов. В то же время в связи с распространением каталитического гидрирования серная кислота, но-видимому, утратит свое значение реагента сероочистки. [c.223]

    Несмотря на то что в производстве как светлых нефтепродуктов, так и смазочных масел нашли широкое применение значительно более совершенные процессы, чем сернокислотная очистка, последняя все же продолжает оставаться надежным методом производства во многих специальных случаях. Так, парафиновые гачи, направляемые на обезмасливание, могут подвергаться предварительной сернокислотной очистке (расход кислоты примерно 70 кг на 1 гача), что существенно облегчает последующую кристаллизацию и очистку парафина. Электроизоляционные масла и масла для холодильных компрессоров подвергают глубокой сернокислотной очистке, в которой расход кислоты может доходить до 700 кг на 1 очищаемого масла и даже превышать эту величину. В тех случаях, когда сернокислотная очистка является своего рода дополнением к очистке селективными растворителями, например для улучшения цвета смазочных масел, вполне достаточен расход 3—6 кг кислоты на 1 масла. [c.235]

    Кислый гудрон, образующийся при сернокислотной очистке нефтепродуктов, имеет очень сложную природу, даже когда очистке подвергается бензин или керосин. В кислом гудроне содержатся эфиры и спирты, которые образуются при взаимодействии кислоты с олефинами сульфокислоты, которые образуются прп сульфировании ароматики, нафтенов и фенолов соли, которые образуются при реакции кислоты с азотистыми основаниями нафтеновые кислоты, сернистые соединения и асфальтены, для которых серная кислота является селективным растворителелк К этому перечню соединений следует еще добавить продукты окислительно-восстановительных реакций, т. е. смолы и растворимые в кислоте углеводороды, а также воду и свободную серную кислоту. Гурвич [66] считает, что в кислом гудроне присутствует много непрочных соединений кислоты с углеводородами эти соединения легко разлагаются при хранении кислого гудрона или при разбавлении его водой. Очевидно, что соотношение между перечисленными компонентами кислого гудрона будет различным в различных конкретных случаях и зависит как от природы очищаемого нефтепродукта, так и от технологического режима очистки и от крепости применяемой кислоты. [c.236]

    Как было указано выше, каталитическая гидроочистка - наиболее эффективный способ удаления из нефтепродуктов сернистых соединений всех типов. Однако процесс гидроочистки требует высоких капитальных и эксплуатационных затрат, и мощности по гидроочистке на НПЗ не всегда обеспечивают очистку всех вырабатываемых на заводах топлив. В ряде случаев выгодна очистка топлив простыми по технологическому оформлению и дешевыми процессами селективной демеркаптанизации. Нельзя оставить без внимания и тот факт, что зарубежными стандартами предусматривается более высокое (до 0,3-0,4 %), чем у нас (до 0,2 %) содержание в реактивных топливах общей серы и допускается возможность введения в топливо антиокислителей и деактнваторов металлов. Установлено, что дизельные топлива, содержащие 0,2-0,3 % общей серы, при отсутствии в них меркаптанов, сероводорода и свободной серы в десятки раз стабильнее полностью обессеренных топлив [1]. [c.19]

    Для экстракции могут использоваться не только очищенные концентраты СС, но и серусодержащие товарные нефтепродукты, например дизельные топлива. Авторы [585] селективно извлекали золото из сточных вод, содержавших также цинк, железо и медь. Такое же дизельное топливо, взятое в отношении 1 1 к раствору [c.80]

    Интерес к микроэлементам нефтей и соединениям, содержащим эти элементы, обусловлен их заметной ролью в технологических процессах переработки и использования нефтепродуктов и их онре- деленной геолого-геохимической информативностью. Микроэлементы в сырье для нефтепереработки снижают технологические показатели процессов, вызывают отравление катализаторов и ухудшают селективность их действия. Природа металла и форма соединения, в которой он находится, существенно влйяют на степень отравления катализатора [858—861]. Содержащиеся в газотурбинных, реактивных и котельных топливах примеси переходных металлов, в особенности ванадия, приводят к интенсивной газовой коррозии находящихся в активной зоне элементов двигателей и энергоустановок [862—865]. Галоидные нефтяные соединения, разлагаясь при термических воздействиях, значительно ускоряют коррозию аппаратуры [866]. [c.159]

    На долю моторных топлив во Франции приходится около 35% всего производства нефтепродуктов. В перспективе она должна значительно увеличиться. В условиях ограниченности мировых запасов нефти и быстрого роста цен на нее особое значение приобретает максимально рациональное использование моторных топлив. С этим связано, в частности, усиление дизелизации автопарка Франции (дизельный двигатель примерно на 25% экономичнее карбюраторного). При пеизменном объеме переработки нефти ресурсы дизельных топлив могут быть увеличены за счет оптимизации требований к цетановому числу и повышения температуры конца кипения с помощью использования депрессорных присадок и внедрения специальных процессов селективного гидрокрекинга, обеспечивающих снижение температуры застывания высококипящих дизельных топлив. Предполагается, что к 1990 г. температура перегонки 85% дизельного топлива повысится до 375°С против 350" С в настоящее время. [c.70]

    Хорошим сырьем для получения сульфонатных присадок на основе сульфированных нефтепродуктов является дизельное масло М-11 селективной очистки. Для получения присадок СБ-3 и СК-3 масло М-11 сульфировали газообразным серным ангидридом и полученную сульфомассу омыляли гидроксидами металлов Ва(0Н)2 — для получения присадки СБ-3, NaOH (при последующей обменной реакции с СаСЬ) —для получения присадки СК-3. [c.76]

    Битумы — смесь высокомолекулярных углеводородов и смоли сюасфальтовыл веществ. Изготавливают их из окисленных продуктов прямой перегонки нефти и компаундированных окисленных и неокисленных продуктов, получаемых при прямой перегонке нефти и экстракционном разделении нефтепродуктов, (асфальты деасфальтизации, экстракты селективной очистки). По назначению битумы делятся на дорожные, кровельные, изоляционные. [c.479]

    Процесс селективного гидрокрекинга предназначен для улучшения эксплуатационных свойств различных нефтепродуктов бензинов, реактивных и дизельных топлив, гидравлических жидкое -тей и масел. Основная направленность процесса - селективное удаление из перерабатываемого сырья алканов нормального строения 1и получение продуктов с низкими температурами застывания, выкипак -щих в пределах исходного сырья. [c.187]

    В ходе исследования моделей нефтесборщиков были разработаны стохастические математические модели процесса нефтесбора регрессионного типа, полученные на основе ортогональных композиционных. матриц планирования эксперимента второго порядка. Модели представляют собой системы 10 уравнений, описывающих зависимость 10 основных факторов процесса нефтесбора (производительность, селективность и т.д.) от угловой скорости вращения барабана, толщины поглощающей оболочки, толщины и вязкости слоя собираемого нефтепродукта. Некоторые результаты моделирования представлены на рис.2. Выявлено, что производ1ггельность нефтесборщика в зависимости от вязкости собираемого продукта носит экстремальный характер, при этом по мере роста вязкости производительность вначале уменьшается за счет ухудшения поглощаю щей способности сорбента, а зате.м начинает возрастать за счет адгезии продукта на поверхности поглощающей оболочки. Рассмотрены также особенности стекания капель воды по поверхности поглощающей оболочки и роль усилия отжима нефти на нефтесбор. [c.98]

    К недостаткам метода следует отнести сравнительно низкую селективность, связанную с захватом кристаллами выделяющегося вещества заметных количеств маточного раствора, необходимость применения специального оборудования (кристаллизаторы, фильтры, центрифуги) и, естественно, неунивер-сальность. Часто метод применяется для выделения из растворов твердых, в обычном состоянии высококипящих веществ, разлагающихся при перегонке (даже при употреблении вакуума). Практическими примерами использования метода могут служить так называемые процессы низкотемпературной депарафинизации нефтепродуктов, выделение таких веществ, как 1, 0-декандикарбоновая кислота, этриол и т. д. Примером технического применения метода для четкого разделения смеси веществ, близких по природе и свойствам, является процесс выделения п-ксилола из смеси ароматических углеводородов g. [c.319]

    Основные показатели процесса дегидрирования бутенов и изоамиленов на катализаторе КНФ приведены в табл. 11.1. Конверсия алкенов составляет в среднем 40—45% при селективности по диену около 85% (масс.). По аналогичной технологии осуществляется разработанный фирмой Shell (США) процесс дегидрирования изоамиленов, выделяемых из Сд-фракций пиролиза нефтепродуктов. [c.356]

    В процессе гидроочистки нефтепродуктов выделяется сероводород. Как видно из рис. 2, расход водорода на хидрирование сернистых соединений в процессе гидроочистки невелик и составляет даже в случае гидроочистки дизельного топлива 0,05—0,1%. Одновременно в процессе щдроочистки нефтепродукта от сернистых соединений происходит и очистка от азота и кислорода. Хотя современные катализаторы гидроочистки обладают селективным действием, все же протекают и другие реакции, на которые расходуется водород. [c.14]

    Выделение некоторых классов соединений, присутствующих в нефтях и нефтепродуктах, осуществляется с больн1ей избирательностью на адсорбентах, чем с помощью селективных растворителей. Структура твердых адсорбентов позволяет локализовать и ориентировать на поверхности более интенсивные силовые ноля, чем это возможно в растворах с полярными растворителями. [c.71]


Смотреть страницы где упоминается термин Нефтепродукты селективная: [c.317]    [c.238]    [c.85]    [c.414]    [c.532]    [c.33]   
Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.520 ]




ПОИСК





Смотрите так же термины и статьи:

Селективная очистка нефтепродуктов



© 2024 chem21.info Реклама на сайте