Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция детергентов

    В итоге вышеописанных явлений капельки масла, частицы углерода и другие ингредиенты пятнообразующего вещества получают возможность, находясь в растворе моющего средства, переходить в состояние дисперсии благодаря приобретению ими отрицательного заряда, препятствующего флокуляции. Такой результат достигается адсорбцией детергента и анионов. [c.77]


    Добавка ПАВ ведет, прежде всего, к увеличению эффективности разделения белков. При этом взаимодействия между молекулами различных ПАВ и пробами могут быть очень различными. С одной стороны, можно конечно обсуждать, вопрос адсорбции детергентов на биомолекулах. Следствием этого является улучшение растворимости и увеличение гидрофильного характера пробы. Наряду с этим, большую роль играет также адсорбция ПАВ на стенках капилляров. Это приводит как к увеличению [c.67]

    Г. Адсорбция детергентов на тканях [c.385]

    Выше было сказано об уменьшении упругости пара от воды, растворенной детергентом, вследствие чего степень адсорбции воды тканью ограничена таким ее количеством, которое было бы при одинаковой относительной влажности адсорбировано из воздушной среды. Благодаря этому предотвращаются вызываемые водой усадка и другие повреждения ткани, погруженной в раствор, применяемый для химической чистки. Поддерживание относительной влажности растворителя на достаточно высоком уровне имеет еще и ту хорошую сторону, что оно препятствует аккумуляции статического электричества на очищаемых предметах одежды [c.186]

    Фундаментальное свойство экстракционной модели, обусловленное самой природой гидрофобных взаимодействий, заключается в том, что инкремент свободной энергии переноса углеводородного фрагмента в молекуле лиганда из воды в органический растворитель практически не зависит от природы последнего [43—47]. Это связано с тем, что главный вклад в эту величину вносит свободная энергия сольватации углеводородного фрагмента в воде. Так, например, независимо от природы органического растворителя инкремент свободной энергии переноса СНа-группы из воды в органическую фазу составляет примерно 700 кал/моль (3000 Дж/моль) [45]. Приблизительно та же величина свободной энергии характеризует адсорбцию алифатических соединений на поверхности раздела фаз вода — масло или вода — воздух, адсорбцию их из водного раствора на поверхность ртутной капли или же процесс солюбилизации органических молекул мицеллами детергентов [45]. Значение этого факта трудно переоценить, поскольку именно поэтому (пользуясь сопоставлением термодинамики гидрофобного взаимодействия белок — органический лиганд с аналогичными данными для модельных процессов) можно выявить, в принципе, специфические свойства структуры или микросреды гидрофобных полостей в белках.  [c.27]


    В шестом разделе проанализированы и обобщены экспериментальные и промысловые исследования, выявляющие причины низкой эффективности применения ПАВ для вытеснения остаточной нефти, связанные с потерями поверхностной активности за счет значительных адсорбционных и деструктивных процессов, высокой чувствительностью к качеству воды (наличие кислорода, микроорганизмов, механических примесей), большими значениями межфазного натяжения между нефтью и растворами ПАВ, перераспределением ПАВ между нефтью и водой. Предложены различные технологические приемы, повышающие эффективность применения НПАВ в пластовых условиях, а именно изменение pH рабочей композиции с ПАВ предварительное подавление центров адсорбции на породе за счет закачки жертвенных реагентов защита эфирных атомов кислорода оксиэтиленовой части молекулы НПАВ и повышение устойчивости к гидролизу путем ввода в систему детергентов с сульфонатными группами. [c.32]

    При использовании катионных детергентов, например, ЦТАБ, формируется двойной электрический слой, в котором положительные заряды направлены внутрь капилляра. Тем самым достигается обращение ЭОП. Вследствие того, что поверхность заряжена положительно, адсорбция катионных белков тормозится электростатическим отталкиванием от стенки. При этом в случае основных белков достигается большое число ступеней разделения и симметричность пиков. Вообще следует обращать внимание на то, чтобы добавленным детергентом не превысить критическую концентрацию мицеллообразования (ККМ). [c.68]

    Изменение вследствие адсорбции угла смачивания между поверхностью твердого тела, загрязняющим веществом и раствором (рис. 68, а и б) помогает собиранию загрязняющего вещества в компактные частицы и некоторому освобождению (очистке) поверхности. Постепенное проникновение молекул детергента между частицами загрязняющего вещества и твердым телом создает на этих мех тах адсорбционные слои. Последнее приводит к возникновению расклинивающего давления между поверхностью твердого тела и загрязняющим веществом (рис. 68,в), в результате чего оно полностью отрывается от поверхности. Этому содействуют и различные механические [c.145]

    ПАВ являются основой синтетических моющих средств (детергентов), обладающих универсальным действием (удаление загрязнений с различных поверхностей и отбеливающая способность). Именно для этих целей расходуется наибольшая часть выпускаемых ПАВ. Механизм моющего действия включает несколько стадий. ПАВ понижает поверхностное натяжение раствора, что улучшает смачивание загрязненных предметов и проникновение раствора в узкие места, капилляры и т. д. Адсорбция ПАВ на частицах загрязнений и на поверхности обрабатываемого предмета способствует отрыву частиц от предмета и их стабилизации в растворе. Образующаяся пена обеспечивает унос загрязнений (флотация). Очистка от масляных загрязнений достигается за счет солюбилизации, это подтверждается тем, что моющее действие ПАВ проявляется при, концентрациях, превышающих ККМ. [c.351]

    В тех случаях, когда пасты имеют горький вкус из-за присутствия детергентов или пыльный привкус (частично обусловленный избирательной адсорбцией абразивных порошков вкусовым веществом), Б их состав вводят подслащивающие вещества. Для этого рекомендуют обычно сахарат натрия и дульцин, немного соли или лимонную кислоту. [c.425]

    Адсорбция на носителе. При работе с пористым носителем поверхность раздела фаз очень велика и даже сравнительно слабая адсорбция может привести к полной неудаче при электрофоретическом разделении. Причины адсорбции не всегда достаточно ясны. По-видимому, силы неэлектростатического происхождения играют большую роль по отношению к белкам, чем к малым ионам. Адсорбция последних (пептидов, аминокислот и т. д.) связана с наличием ионизованных групп на поверхности носителя. Установлено, что в целлюлозе и крахмале, например, имеется значительное количество карбоксильных групп. Так как эти группы заряжены отрицательно, опасность адсорбции относительно мала для отрицательных ионов, но велика для положительных. Делались попытки уменьшить заряд бумаги этерифи-кацией карбоксилов диазометаном. С белками рекомендуется работать при pH выше их изоточки, тогда электростатическое отталкивание препятствует адсорбции. Этот эффект можно усилить, используя ионообменную бумагу, в которой с поверхностью целлюлозных волокон химически связано значительное число ионизированных групп с зарядом, противоположным заряду исследуемого иона. Для уменьшения адсорбции белков применялись также детергенты иногда помогает предварительная обработка носителя раствором исследуемого белка. Хотя в некоторых случаях эти меры приносят желаемый эффект, адсорбция часто (для белков — почти всегда) наблюдается в той или иной степени при электрофорезе на твердом носителе. Обратимая адсорбция проявляется в уменьшении скорости движения и в образовании хвостов у движущихся зон, что ухудшает разделение и затрудняет количественный анализ. Необратимая адсорбция приводит к тому, что на всем пути зоны остается равномерный след — адсорбированный белок, а количество вещества в зоне постепенно уменьшается. Если это количество мало, зона может вообще исчезнуть по дороге. Иногда адсорбция сопровождается денатурацией белка, частичной или полной потерей его биологической активности. [c.81]


    Основной причиной образования мицелл является уменьшение свободной энергии системы при самоассоциации молекул детергента своими гидрофобными цепями. При концентрациях ниже ККМ наблюдается адсорбция молекул ПАВ на поверхности и образование низкомолекулярных ассо-циатов — димеров и других небольших агрегатов, что также приводит к небольшому выигрышу в свободной энергии [20, 21,24]. Мицеллы представляют собой динамические системы, находящиеся в равновесии с мономерными молекулами ПАВ. Показано, что скорость распада мицелл очень велика время полураспада составляет порядка миллисекунды [25— 28]. По-видимому, и скорость их образования того же порядка. [c.224]

    Действие активного угля. Активный уголь хорошо удаляет жесткие детергенты адсорбцией. Он задерживает детергенты лучше, чем фенолы, в 2—5 раз в зависимости от вида угля при той же самой конечной равновесной концентрации. Порошкообразный активный уголь вводят на стадии осветления, когда величина pH не влияет на процесс очистки. Содержание детергентов можно снизить на 50% при дозах от 12,5 до 25,0 г/м воды в зависимости от вида детергента и типа используемого осветлителя (статический отстойник или осветлитель со взвешенным слоем осадка, в который добавлен уголь). Теоретически можно удалить из воды более 90% детергентов при использовании порошкообразного активного угля, но практически это требуется редко и может быть достигнуто при использовании очень высоких доз (40—80 г/м ), что экономически невыгодно. [c.60]

    Сайто [1064] методом диализа изучил адсорбцию детергентов (додецилсульфата натрия, хлоргидрата додециламина и т. д.) на водорастворимых полимерах, в том числе на поливинилпирро-лидоне. Густавсон [1065] указывает, что поливинилпирролидон способен связывать до 90—100% от собственного веса таннина мимозы, причем количество связываемого вещества не зависит от pH в пределах pH 2—7. Франк, Баркин и Эйрик [1066] иссле- [c.596]

    Водоподготовка декарбонизация вод, содержащих гидрокарбонаты, извлсчеиие тяжелых металлов из оборотных и сточных вод, возврат меди из аммиачных растворов, адсорбция детергентов [c.115]

    В настоящее время существование явлений адсорбции между моющим средством и волокнами установлено с достаточной достоверностью. В тех случаях, когда роль адсорбентов выполняют шерсть и прочие белковые волокна, связь между моющим средством и поверхностью адсорбента осуществляется благодаря химической реакции. Анион детергента вступает в реакцию с аминогруппой шерсти таким же образом, как это наблюдается у кислого красящего вещества. Ведь уравновешивающее действие алкиловых сульфонатов в кислой красящей ванне приписыамигся соревнованию между красителем и сульфонатом за обладание этими аминогруппами. Согласно опытам Эйкина (см. ссылку 72) шерсть, погруженная в раствор алкилсульфат натрия, удаляет из этого раствора все наличие сульфата в том случае, если превалирует способность данного количества шерсти к связыванию кислот. Он установил, что адсорбция в нейтральных растворах достигает 25% и увеличивается, как это и следовало ожидать, одновременно с ростом величины pH. [c.70]

    Пока для нас важным является то, что, согласно раскрытой Палмером картине комплекса протеин-детергент, моющее средство адсорбируется неполярной поверхностью протеиновой молекулы. В результате адсорбции неполярная поверхность превращается в полярную. В действительности происходит следующее детергент вытесняет маслянистое пятнообразующее вещество, адсорбированное данной поверхностью, на новую полярную поверхность, которую пятнообразующее вещество уже не в состоянии смачивать угол касания, образовавщийся между этой поверхностью и перемещенным маслянистым пятнообразующим веществом, оказывается весьма значительным, вследствие чего масло на этой новой поверхности свертывается в шарики. Адам (см. ссылку 75) впервые опубликовал многочисленные превосходные микрофотографии, иллюстрирующие описанные явления, но особенно хорощи микрофотографии Стивенсона (см. ссылку 6). [c.71]

    Стивенсон в несколько ином свете представляет явления адсорбции и растворения в процессе чистки моющими средствами. Он говорит о комплексах, состоящих из молекул или мицелл детергента и других полярных молекул с длинной цепью, как-то це-тилового спирта, холестерина, лауриновой кислоты. Процесс образования таких комплексов не представляет собою ни простое растворение, ни эмульсирование он скорее всего похож на явление особого рода, которому присвоено название коацервации . Неплохое обсуждение этого явления можно найти в труде Горт-нера Основы биохимии (см. ссылку 76). Название, данное указанному явлению, происходит от латинского глагола, обозначающего собираться вместе . Это очень показательно, поскольку упомянутое явление нередко уподобляют пчелиному рою, в котором каждая из его составных частей, образующих целое, сохраняет свою обособленную индивидуальность. Такое явление может иметь [c.71]

    При дозах детергента 0,3 и 0,5 мг на 1 мг белка митохондрий действие дигитонина исследуют также в присутствии 1 М КС1. В случае адсорбции фермента на внутренней мембране митохондрий под действием КС1 возможна эффективная солюбилизация аспартатаминотрансферазы. Это можно установить, определив активность фермента в супернатанте после центрифугирования обработанной суспензии при 20 000g в течение 20 мин. [c.353]

    Выделение. Одии из первых этапов выделения Б,-получение соответствующих органелл (рибосом, митохондрий, ядер, цитоплазматич. мембраны) с помощью дифференциального центрифугирования. Далее Ь переводят в растворимое состояние путем экстракции буферными р-рами солей и детергентов, иногда-неполярными р-рителями. Затем применяют фракционное осаждение неорг. солями [обычно (N 14)2804], этанолом, ацетоном или путем изменения pH, ионной силы, т-ры. Для предотвращения денатурации работу проводят при пониж. т-ре (ок. 4°С) с целью исключения протеолиза используют ингибиторы протеаз, нек-рые Б. стабилизируют полиоламн, иапр. глицерином. Дальнейшую очистку проводят по схемам, специально разработанным для отдельных Б. илн группы гомологичных Б. Наиб, распространенные методы разделения-гель-про-никающая хроматография, ионообменная и адсорбц. хроматография эффективные методы-жидкостная хроматография высокого разрешения и аффинная хроматография. [c.250]

    Принципиально должна существовать также возможность использования в КЗЭ испытанного в классическом электрофорезе и в жидкостной хроматографии анионного ПАВ ДДСН. Однако в систематических исследованиях кислых белков оказывается, что добавка ДДСН в количествах от ррт до одного процента к пробе и к буферу приводит к очень неопределенным результатам. В общем случае не улучшается ни эффективность, ни селективность, а даже наблюдается некоторое ухудшение этих характеристик. Возможным объяснением этого может быть хорошо известное действие денатурации, оказываемое ДДСН на белок. Наряду с этим, в наблюдаемой потере селективности большую роль играет, конечно, адсорбция ПАВ на биомолекулах и связанное с этим появление заряда пробы. Первоначальная структура заряда белков может полностью исчезнуть или перекрываться этим эффектом, так что разделение в электрическом поле произойдет только лишь по адсорбированным зарядам детергентов. [c.69]

    Недостаток покрытия полимерами заключается в сильной гидрофобности (адсорбция белков ), так что такого рода фазы часто используются в присутствии неионных или внутреннеионных детергентов. Сопоставление применяемых до настоящего времени полимерных покрытий приведено в таблице 24. [c.70]

    Адсорбция молекул детергента на стенках капилляра приводит к обращению направления ЭОП уже при концентрациях несколько ниже ККМ. Вследствие этого анализируемые вещества движутся к аноду. Электрическое поле в данном случае должно налагаться таким образом, чтобы анод находился со стороны детектора. Противоион ионного детергента при данной температуре оказывает определенное влияние на ККМ. Например, ДДСН более растворим в воде, чем додецилсульфат калия. Если в буфере присутствуют ионы калия, это может привести к обмену противоионов, в результате чего растворимость детергента может уменьшиться настолько, что ККМ не будет достигаться. [c.82]

    Дискообразные мнцеллы фосфолипидов в водной среде могут стабилизироваться не только с помощью детергентов, но и за счет адсорбции по периметру диска амфифильных белков и пептидов (рнс. 286). Одним из эффективных стабилизаторов такого типа являются аполипопротенны — белкн, входящие в состав липопро-теинов плазмы кровн (см. с. 558). В полипептидной цепи этих белкоа имеются особые участки (содержащие от 10 до 18 аминокислотных остатков), способные сворачиваться в а-спираль. Отличительная черта образуемой структуры состоит в том, что большинство гидрофобных остатков расположено на одной стороне спирали, [c.556]

    Когда раствор детергента приходит в контакт с загрязненной поверхностью, молекулы детергента образуют адсорбционные слои как на загрязняющих веществах-, так и на поверхкости очищаемого объекта. При этом способность детергентов образовывать полуколлоидные растворы имеет большое значение, так как раствор при адсорбции не обедняется свободными молекулами —молекулы, уходящие в адсорбционные слои, компенсируются молекулами, переходящими в раствор при распаде мицелл. Поэтому раствор обладает достаточным запасом вещества, чтобы покрыть адсорбционным слоем всю поверхность. Если поверхность гидрофобна, молекулы де- [c.144]

    В ранней работе Кинга и Мукерджи (1939, 1940) показана разница в кинетике скоростей коалесценции эмульсий с различными типами эмульгаторов. Однако первой действительной проверкой современной теории для эмульсий были работы вад ден Темпеля (1953а, Ь, с). Им впервые вычислена сила электрического двойного слоя на каплях масла для мыл и детергентов из данных о поверхностном натяжении с помощью уравнения Гиббса. Он также показал, что высокий энергетический барьер между каплями будет обеспечен при значениях вплоть до 125 мв. Более низкие значения получены для систем, содержащих Na l, и еще ниже — М С12- Эти расчеты подтвердились измерением -потенциалов, величина которых, как оказалось, имела одинаковый порядок с величиной а . Исключение составляли системы с поливалентными солями, где величина -потенциалов была намного ниже, вероятно, из-за адсорбции противоионов в слое Штерна. [c.114]

    Примечание. Всс неподвижные фазы иаисссиы v a целит, покрытый 0,5% детергента polytergent J.-300, Силиконы D -550, QF-1. SE-30 SE-31, versilub F-50 нанесены на носитель в количествах, соответственно, 20,4% 20,1% 20,0% 20,3% i9,9%. Необходимо отметить, что добавка детергента к сорбенту, покрытому силиконом, резко ухудшает эффективность колонки и увеличивает криволинейность изотермы адсорбции на границе раздела жидкость — носитель. Поэтому следует относиться осторожно к приведенным в табл, 1П.2.В данным и считать их оценочными. Достоверными являются относительные величины удерживания близких по полярности веществ, изомерных соединений. [c.114]

    Адсорбция молекул детергентов на тканях и поверхностях раздела твердое тело— раствор обычно чрезвычайно сложна. Поэтому здесь этот вопрос можно рассмотреть лишь очень кратко. На рис. Х1-19 приведены характерные изотермы адсорбции доде-цилбензолсульфоаата натрия на хлопчатобумажной ткани [82]. Точка перегиба соответствует резкому увеличению наклона кривой, после чего следует быстрый рост адсорбции до некоторого максимального значения. Аналогичные данные получены Сали-бом и Китченером [83] (см. также [70—72]) и позднее Мукерджи и Анавилом [84]. Если эти данные относятся к истинному равновесию и между раствором и адсорбированной фазой не происходит перераспределения компонентов (разд. П-6Б), то наличие максимума на изотермах адсорбции, по-видимому, трудно согласовать со вторым законом термодинамики. [c.385]

    Возможно, проявление адсорбции ароматических веществ нуклеозидов, ароматических аминокислот и т. п. Регенера1 ию геля выполняют 0,2 М NaOH или раствором детергента. [c.70]

    Физические свойства. Во многих работах приведены данные исследований вязкости растворов поливинилового спирта [21—31]. Эвва [21] исследовал структурную вязкость и реологические свойства водных растворов поливинилового спирта. Скорость течения изменяется с напряжением t по уравнению q = Ах , где А vi п — константы, зависящие от температуры, концентрации и степени полимеризации. Саито [30] объясняет повышение вязкости растворов полимеров при добавлении детергентов образованием комплексов вследствие селективной адсорбции ионов детергента за счет дисперсионных сил и наличия сил притяжения между ионами детергента и диполем в полимере. Комплексообразование больше зависит от строения молекул детергента, чем от строения полимера. Исследованию молекулярной структуры и кристалличности поливинилового спирта посвящен ряд работ [32—39]. [c.340]

    Явления адсорбции и сорбции находят большое и разнообразное применение. Они играют важную роль во многих биологических процессах, в катализе, при крашении. Действие разнообразных моющих веществ (детергентов) основано на адсорбции. В результате адсорбции меняется молекулярная природа поверхности адсорбента она из гидрофильной может стать гидрофобной и наоборот. Это очень важно для процессов смачивания и диффузии (в том числе и в живом организме). Методы анализа, основанные на адсорбции, позволяют определять малые и ультрамалые количества веществ в сложных смесях. Например, таким путем удается исследовать системы, содержание радиоактивных изотопов в которых составляет 10 и даже 10-11 г на 1 г смеси или раствора (ультраразбавленные системы). Особенно большую роль адсорбция играет в области коллоидной химии (гл. 16). [c.135]

    Изучалась возможность определения в воздухе смеси алифатических аминов i—Сб. Накапливание этих веществ из воздуха производилось посредством их поглощения в последовательно соединенные поглотительные сосуды, наполненные раствором, содержащим 14 мл 20% НС1, 1 л воды и 1 л изопропанола. Было найдено, что в первых двух поглотительных сосудах задерживается 95% аминов. Амины экстрагировались изоамиловым спиртом и экстракт анализировался на составной колонке при 70°. Первая колонка длиной 1 м содержала смесь 11,4% диметилового эфира гексаэтиленгликоля и 0,6% триэтаноламина на обработанном щелочью (5% мета-нольного раствора КОН) детергенте Тайд с величиной частиц 0,20—0,25 мм вторая колонка той же длины содержала 20% силикона ДС-703 на обработанной 8% щелочи эмбацеле с величиной частиц 0,125—0,160 мм. Во избежание потерь пробы за счет адсорбции авторы производили периодическую промывку колонки с помощью нескольких повторных вводов изоамилового спирта. При определении в воздухе диметиламина, триметиламина и аммиака использовали стеклянные спиральные колонки с инзенским кирпичом и дибутилфтала-том. Искусственные смеси готовили в токсикологических камерах емкостью 100 л [9]. Дальнейшие работы по определению [c.100]

    В настоящее время нет сомнений в том, что анионные и катионные детергенты притягиваются к белкам при помощи ионизированных групп белковых молекул однако весьма вероятно и то, что неполярные углеводородные цепи детергентов также принимают участие в образовании этих соединений. Неполярная углеводородная группа соединяется, повидимому, с неполярными группами белка, т. е. с алифатическими цепями аланина, валина, лейцина и изолейцина, с бензильной группой фенилаланина и с группами СНг пирролидинового кольца пролина. При помощи этих неполярных группировок белки соединяются с жирами и жирными кислотами [39], а также с простыми углеводородами. Так, например, было установлено, что 2-процентный раствор эдестина в 10-процентном хлористом натрии способен удержать в растворе 5 000 молекул пентана на одну молекулу белка [40]. Адсорбция кишечной стенкой полярных соединений с низким молекулярным весом (например, четыреххлористого углерода) [c.225]


Смотреть страницы где упоминается термин Адсорбция детергентов: [c.114]    [c.55]    [c.125]    [c.151]    [c.351]    [c.642]    [c.384]    [c.114]   
Физическая химия поверхностей (1979) -- [ c.385 ]




ПОИСК





Смотрите так же термины и статьи:

Детергенты



© 2025 chem21.info Реклама на сайте