Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Работа выхода электрона реакции

    Было предпринято много попыток установить связь между перенапряжением водорода на данном металле и каким-либо другим его физическим свойством каталитической активностью по отношению к реакции рекомбинации свободных атомов водорода, теплотой плавления металла или теплотой его испарения, работой выхода электрона, минимальным межатомным расстоянием в решетке кристалла, коэффициентом сжимаемости и т. п. В результате исследований было отмечено, например, что чем выше температура плавления, тем ниже перенапряжение водорода однако это наблюдение нельзя рассматривать даже как приближенное правило. Бонгоффер (1924) нашел, что чем выше каталитическая активность металла по отношению к реакции рекомбинации атомарного водорода, тем ниже на нем перенапряжение водорода  [c.399]


    В первом разделе книги излагаются методы изучения и современные представления о строении границ раздела металлических или полупроводниковых электродов с ионными системами (растворами, расплавами), а также границы раствор — воздух. Значительное внимание уделено термодинамике поверхностных явлений на электродах, адсорбирующих водород и кислород, и современной теории адсорбции органических соединений на электродах. Во втором разделе подробно анализируются закономерности стадии подвода реагирующих частиц к поверхности электрода, методы изучения этой стадии и приводятся примеры использования явлений массопереноса при конструировании хемотронных устройств и новых источников тока. Третий раздел посвящен изложению закономерностей стадии переноса заряженных частиц через границу электрод — раствор и физических основ элементарного акта электрохимических реакций. При этом рассматриваются такие важные в теоретическом отношении вопросы, как роль работы выхода электрона и энергии сольватации ионов в электродной кинетике. Теории двойного слоя, массопереноса и элементарного акта, по образному выражению А. Н. Фрумкина, — те три кита , на которых базируется мощное и стройное здание кинетики электродных процессов. [c.3]

    В лаборатории химической кинетики Физико-химического института им. Л. Я. Карпова проведено экспериментальное изучение кинетики парциального окисления и окислительного аммонолиза пропилена в НАК Кинетика изучалась проточно-циркуляционным методом. Одновременно были осуществлены физико-химические исследования катализаторов этих процессов, имеющих различный состав, методами рентгеноструктурного и термографического анализов, адсорбционными измерениями, измерениями контактной разности потенциалов (работа выхода электрона) и др. Получены кинетические уравнения, описывающие брутто-процесс окисления и окислительного аммонолиза пропилена, и уравнения скоростей образования целевых и побочных продуктов указанных реакций. Предложены упрощенная  [c.97]

    Если оценить константу по числу соударений электронов со стенкой металла-ящика в простой модели Зоммерфельда (с поправкой, вносимой особенностями границы электрод — раствор), то можно сравнить ток термоэмиссии при заданном потенциале ф с экспериментально наблюдаемыми скоростями электрохимических реакций при тех же самых значениях ф. Такое сравнение показывает, что наблюдаемые токи электровосстановления обычно на много порядков больше, чем г е. Аналогичный результат получается, если сравнивать энергию активации стадии разряда с работой выхода электрона в раствор, Поэтому необходимо предположить, что гидратация электрона происходит уже на расстоянии порядка 1,4 А от поверхности электрода (работа переноса электрона из металла в эту точку меньше, чем Однако образование гидратированного электрона в слое адсорбированных на электроде молекул воды, имеющем малую диэлектрическую проницаемость, представляется мало вероятным, особенно, если учесть весьма низкую энергию гидратации электрона ( 36 ккал моль). [c.293]


    В окислительно-восстановительных реакциях важная роль принадлежит некоторым катализаторам, являющимся полупроводниками ( 55 ), причем между их каталитическим действием и электронно-физическими свойствами (энергетическими уровнями и работой выхода электрона) существует связь. Так, С. Я. Пшежецкий и И. А. Мясников показали, что существует отчетливая связь между электропроводностью окиси цинка и ее каталитической активностью в реакции дегидрогенизации изопропилового спирта с образованием ацетона. Это наблюдается и между каталитической активностью и температурой, и при сопоставлении результатов, полученных в атмосфере чистого азота, с результатами, получаемыми при добавлении к азоту 0,4% кислорода, сильно снижающего и электропроводность, и каталитическую активность окиси цинка в данном процессе. [c.498]

    Ниже приведены значения энергии активаций реакции на разных катализаторах и работы выхода электрона из металла-катализатора. [c.424]

    Существуют факты, которые указывают на важную роль свободных и слабо связанных электронов катализатора в каталитической реакции. К их числу можно отнести высокие каталитические свойства переходных металлов, обладающих незавершённой -оболочкой и возможностью перехода электронов в другую электронную оболочку каталитическую активность полупроводников, электроны которых могут осуществлять переходы между уровнями заполненной и свободной зоны и уровнями примесей наблюдающийся в некоторых случаях параллелизм между каталитическими свойствами и такими свойствами веществ, как электрическая проводимость и работа выхода электрона и т. п. Влияние работы выхода электрона на каталитическую активность иллюстрирует разложение пероксида водорода на меди или никеле. Одна из стадий этой реакции состоит в диссоциации молекулы пероксида водорода  [c.360]

    Электрохимические реакции протекают на границе электрод — раствор, а потому следовало бы сопоставлять энергию активации и скорость электродного процесса не с работой выхода электрона из металла в вакуум, а с работой выхода электрона из металла в раствор при заданном электродном потенциале Е. В связи с этим рассмотрим зависимость величины от природы металла. [c.270]

    Поскольку такие свойства металла, как работа выхода электрона, сжимаемость, способность металла адсорбировать водород и др., зависят от одних и тех же структурных особенностей твердого тела, то не удивительны наблюдаемые корреляции между константой а в уравнении Тафеля и сжимаемостью металла, между lg /о и работой выхода электрона и т. п. Однако такую корреляцию нельзя использовать для доказательства непосредственной связи скорости электрохимической реакции с работой выхода электрона. [c.275]

    Итак, если реагирующие вещества и продукты реакции не адсорбируются специфически на электроде, то влияние природы металла проявляется только через изменение строения двойного электрического слоя. Влияние природы металла на скорость стадии разряда — ионизации обусловлено как изменением строения двойного слоя, так и различием в энергиях адсорбции реагирующих веществ и продуктов реакции на разных металлах. Что же касается работы выхода электрона, то она не входит непосредственно в уравнения электрохимической кинетики. [c.275]

    Кратко остановимся на так называемом термоэмиссионном механизме электродных процессов. Согласно этому механизму термоэмиссия электронов в объем раствора является первичным процессом при электровосстановлении различных ионов или молекул. Образовавшиеся сольватированные электроны реагируют затем с компонентами раствора или молекулами растворителя, давая конечные продукты восстановления. Данные по работе выхода электрона из металла в раствор, полученные при помощи электродной фотоэмиссии, позволяют оценить вероятность такого механизма реакций электровосстановления. Работа выхода электрона в раствор оказывается существенно больше, чем энергия активации стадии разряда—ионизации при соответствующем потенциале электрода. Так, например, даже для очень [c.275]

    Излагая современное учение о кинетике электрохимических реакций, авторы более подробно останавливаются на закономерностях двух основных стадий электродных процессов стадии подвода реагирующих частиц к поверхности электрода и стадии разряда — ионизации, в которой происходит перенос заряженной частицы через границу электрод — раствор. В этом пособии достаточно полно представлены современные экспериментальные методы электрохимической кинетики, физические основы квантовомеханической теории электродных процессов, а также отражены такие вопросы, которые слабо освещены в литературе, например роль работы выхода электрона и энергии сольватации в электрохимической кинетике и др. [c.3]


    Поскольку электрохимические реакции протекают на границе электрод — раствор, то интересно рассмотреть зависимость работы выхода электрона из металла в раствор от природы электрода. [c.290]

    В связи с обнаружением сольватированных электронов при радиолизе водных растворов рассмотрим предположение о том, не является ли термоэмиссия электронов в объем раствора первичным процессом при электровосстановлении различных ионов или молекул. Образовавшиеся сольватированные электроны реагируют затем с компонентами раствора или молекулами растворителя, давая конечные продукты восстановления. Данные по работе выхода электрона из металла в раствор, полученные при помош,и электродной фотоэмиссии, позволяют оценить вероятность такого механизма реакций электровосстановления. [c.293]

    Результаты сопоставления скоростей электровосстановления анионов на отрицательно заряженной поверхности разных металлов, а также электровосстановления органических веществ в условиях сильной поверхностной активности растворителя подтверждают выводы о роли работы выхода электрона в кинетике электродных процессов, которые впервые были сделаны Фрумкиным в 1935 г. Здравый смысл подсказывает, что реакция 0- -пе-- должна протекать тем легче, чем меньше работа выхода электрона из металла. Такое заключение, действительно, было бы справедливым, если бы можно было сопоставлять скорости реакций на разных металлах при одинаковых гальвани-потенциалах. На самом деле сопоставление возможно либо при одинаковом перенапряжении, либо при одинаковом электродном потенциале, измеренном относительно стандартного электрода сравнения. При одинаковом электродном потенциале электрохимические потенциалы электронов в разных металлах равны, т. е. электроны в разных металлах полностью энергетически эквивалентны. Таким образом, реальная энергия активации реакции не зависит от работы выхода электрона, что и подтверждают данные рис. У1П.23. [c.240]

    Заметное влияние потенциала деформации на электрохимиче- ские реакции может происходить при изменении работы выхода электрона. Последняя имеет существенное значение для катодных реакций, изменяя как перенапряжение разряда ионов, так и адсорбционные процессы на поверхности электрода. [c.12]

    Двойной электрический слой о-казывает большое влияние на физические (электрические) и химические свойства поверхности деталей двигателей и механизмов. В частности, под его воздействием изменяется работа выхода электрона через по-верхвость раздела фаз. С другой стороны, двойной слой определяет способность электронов участвовать в реакции, а значит, от него зависят и химические свойства вещества [205]. [c.185]

    В этом случае следует ожидать ускорения реакции с увеличением сродства металла к электрону. Последняя величина с достаточной точностью характеризуется работой выхода электрона из решетки металла. Данные, приведенные на рис. XIII, 13, показывают, что теоретическое предположение вполне оправдывается. [c.364]

    В случае таких окислов, как, например, Си—О, окислительная стадия протекает медленно (нулевой порядок по олефину), в то время как для В1—Мо—О медленной является восстановительная стадия (нулевой порядок по кислороду). Промоторы (В1 для Мо—О, Мо для V—О) должны влиять главным образом на медленную стадию, например на способность окислов Мо—О или V—О восстанавливаться [92]. С точки зрения электронной теории промоторы должны изменять работу выхода электрона (ф) твердого тела, причем увеличение ф ускоряет восстановление, а уменьшение ф ускоряет окисление. Дальнейшие реакции алилльного радикала определяют селективность катализатора, но предполагаемые механизмы не были достаточно обоснованы. Так, например, образование альдегида и диена представляли по аналогии с гомогенным разложением гидроперекисей [16] соответственно следующим образом  [c.164]

    Выведите уравнение, связывающее энергию активации приведенной реакции с работой выхода электрона из металла, и покажите, во сколькс раз изменяется скорость реакции на приведенных металлах по срапнению с платиной. Предэкспоненциальный множитель урав-№шия Аррениуса для всех металлов одинаков. [c.424]

    Это уравнение называют логарифмическим. Соответственно, график, построенный в координатах у — g t + onst) или у — — Ig t (при t > onst) имеет вид прямой линии. Логарифмическое уравнение, впервые полученное Тамманном и Кестером [11], отражает поведение многих металлов (Си, Fe, Zn, Ni, Pb, d, Sn, Mn, Al, Ti, Та) на начальных стадиях окисления. Вначале справедливость этого уравнения ставилась под сомнение. Были сделаны попытки вывести уравнения на основе предположений о существовании специфических свойств оксидов, таких как наличие диффузионных барьеров и градиентов ионной концентрации и других. Эти предположения не получили экспериментального подтверждения. С другой стороны, было показано, что логарифмическое уравнение можно вывести из условия, 4TQ скорость окисления контролируется переходом электронов из металла в пленку продуктов реакции, причем эта пленка имеет пространственный электрический заряд во всем своем объеме [7, 12]. Преобладание заряда, обычно отрицательного, в оксидах вблизи поверхности металла, подобно электрическому двойному слою в электролитах, было установлено экспериментально. Таким образом, любой фактор, изменяющий работу выхода электрона (энергию, необходимую для удаления электрона из металла), например ориентация зерен, изменения кристаллической решетки или магнитные превращения (точка Кюри), изменяет скорость окисления, что и наблюдалось в действительности [13—15. Когда толщина пленки превышает толщину пространственно-заряженного слоя, определяющим фактором обычно становится скорость диффузии или миграции сквозь пленку. При этом начинает выполняться параболический закон, и ориентация зерен или точка Кюри перестают оказывать влияние на скорость окисления. Исходя из этого, можно сказать, что в начальной стадии оксидная пленка на металлах [c.193]

    В настоящее время принципы геометрического и энергетического соответствия мультиплетной теории заменяются принципами, учитывающими химическую природу реагентов. Для отдельных каталитических реакций рассматривается соответствие реагентов и катализатора по работе выхода электрона или протона, по энергиям связи, по величине константы нестойкости, по характеру симметрии электронных орбиталей. [c.358]

    Метод фотоэлектронной эмиссии. В эллипсометрическом методе и в методе модуляционной спектроскопии отражения энергия кванта света ftv меньшие, чем работа выхода электрона из металла в раствор Если же выполняется обратное соотношение hv> We , то при освещении электрода происходит фотоэмиссия электронов из металла в раствор, которая также может служить источником информации о строении границы между электродом и раствором. В методе фотоэмиссии для освещения электрода используется ближний ультрафиолет. Эмиттированные электроны теряют часть своей энергии (термализуются), затем сольватируются и далее вступают в реакцию со специально добавляемыми в раствор веществами — акцепторами электронов. Введение в раствор акцепторов (например, Н3О+, N2O) необходимо для того, чтобы избежать полного обратного захвата соль- [c.184]

    Вместе с тем, поскольку электродные реакции протекают на границе электрод — раствор (или расплав), представляет интерес вопрос о работе выхода электронов из металла в раствор (или расплав) при заданном электродном потенциале. За пределами двойного слоя потенциал в любой точке раствора (или расплава) одинаков, следовательно, одинаков и электрохимический потенциал электрона. Поэтому работа выхода электрона в раствор (или расплав) электролита при заданном электродном потенциале не зависит от природы металла. Этот вывод нашел прямое экспериментальное подтверждение в опытах по фотоэмиссии электронов из металла в раствор электролита, а также в опытах по катодной генерации сольватированных электронов в апротонных растворителях. На рис. VIII.24 представлены катодные поляризационные кривые в гексаметилфосфортриамиде на различных металлах (Л, И. Кришталик, Н. М. Алпатова). Нижняя группа прямых характеризует зависящее от природы металла катодное выделение водорода в подкисленных растворах солей. Верхняя прямая отвечает процессу генерации сольватированных электронов на различных катодах. Практическое совпадение прямых для разных металлов демонстрирует независимость работы выхода электронов из металла в раствор от природы металла. [c.240]

    Когда элемент работает, т. е. проходит ток, электроны у контакта медь —цинк совершают переход между одинаковыми энергетическими уровнями таким образом, здесь энергия ни теряется, ни приобретается. На поверхности же металлов ионы переходят с высокого уровня на более низкий, поэтому энергия элемента берется от химической реакции у электродов, хотя разность в уровнях цол ожительного иона на границе металл — раствор обусловлена прежде всего разностью в работе выхода электрона для обоих металлов. [c.150]

    Влияние деформации на катодную поляризационную кривую выделения водорода для стали 1Х18Н9Т аналогично отмеченному выше для стали 20 деформация на стадии деформационного упрочнения ускоряет катодную реакцию (на стадии динамического возврата наблюдалось ослабление этого влияния, как и в случае анодной поляризации). Объясняется это, по-видимому, зависимостью скорости разряда ионов водорода и рекомбинации адсорбированных атомов от работы выхода электрона и адсорбционных свойств поверхности металла в связи с влиянием деформации электрода на эти свойства. Однако возможно, что наблюдаемое изменение катодной поляризации связано с пространственным перераспределением анодных и катодных реакций вследствие стремления к локализации анодного растворения пластически деформированного электрода, как это рассмотрено в гл. IV. [c.86]

    При количеств. И. м. гетерог. материалов с резко отличающейся работой выхода электронов из разл. фаз используют реакц. эмиссию, при к-рой в камеру микроанализатора впускают реакционноспособный газ (напр., О2, Н2) для выравнивания работы выхода. При анализе диэлектриков проводят нейтрализацию поверхностного заряда медленными электронами или наносят на пов-сть образца металлич. сетки и диафрагмы. [c.260]


Смотреть страницы где упоминается термин Работа выхода электрона реакции: [c.65]    [c.446]    [c.276]    [c.276]    [c.279]    [c.211]    [c.276]    [c.225]   
Введение в кинетику гетерогенных каталитических реакций (1964) -- [ c.268 , c.272 ]




ПОИСК





Смотрите так же термины и статьи:

Работа выхода

Работа выхода электрона

Работа электрона



© 2025 chem21.info Реклама на сайте