Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронография кристаллы

    Сравнительные возможности рентгеноструктурного анализа, нейтронографии и электронографии кристаллов [c.125]

    Это убедительно подтверждается и всей практикой структурных исследований более 99 7о всех структурных расшифровок выполняется на основе РСА. Нейтронографический анализ используется главным образом для решения различных специальных задач. Электронография кристаллов как метод структурного анализа применяется лишь там, где не удается вырастить монокристаллы. [c.173]


    В дифракционных методах исследования структуры используются рентгеновские лучи, поток электронов или нейтронов с длиной волны того же порядка, что и расстояния между атомами в молекулах или между атомами, ионами и молекулами в кристаллах. Поэтому, проходя через вещество, эти лучи дифрагируют. Возникающая при этом дифракционная картина строго соответствует структуре исследуемого вещества. Рентгеновские лучи (рентгенография) чаще всего применяют для исследования структуры кристаллов, электроны (электронография) — для исследования газов и кристаллов нейтроны (нейтронография) — для исследования жидкостей и твердых гел. [c.150]

    Близко к этому методу (рентгенографии) стоит метод дифракции электронов (электронография). Волновая механика показывает, что при действии пучка электронов на поверхность кристалла возникают те же дифракционные эффекты, что и при действии рентгеновских лучей. Определение структуры кристаллов и молекул методом дифракции электронов привело к результатам, полностью совпадающим с результатами, получаемыми с помощью рентгенографии, В последние годы с этой же целью стали применяться и нейтроны (нейтронография), что дало возможность определять положение и водородного атома, чего не удавалось достигнуть методами рентгенографии и электронографии. [c.123]

    В дифракционных методах исследования структуры используются рентгеновские лучи, поток электронов или нейтронов с длиной волны того же порядка, что и расстояния между атомами в молекулах или между частицами (ионами, атомами или молекулами) в кристаллах. Поэтому, проходя через вещество, лучи рассеиваются (дифрагируют). Возникающая дифракционная картина строго соответствует структуре исследуемого вещества. Среди дифракционных методов различают рентгенографию, электронографию и нейтронографию. [c.182]

    В общем курсе кристаллохимии рассматриваются методы исследования структуры кристаллов — рентгеноструктурный анализ, нейтронография и, частично, электронография. Однако не дается изложение специального метода рентгеноструктурного анализа, который используется для определения абсолютной конфигурации молекул. Такая задача возникает при изучении оптически активных веществ. В гл. VIH, IX и X представлены оптические методы исследования оптически активных веществ. Особенность этих методов состоит в том, что легко определить с их помощью различие в абсолютной конфигурации молекул, но нет возможности прямого отнесения экспериментальных данных по ДОВ или КД к определенному энантиомеру. Именно эту проблему и решает метод аномального рассеяния рентгеновских лучей. [c.216]


    ЭЛЕКТРОНОГРАФИЯ — метод исследования вещества, основанный на дифракции электронов. Э. применяется при исследовании кристаллов, поверхностей различных тел, строения молекул и др. Исследования проводятся иа приборе — электронографе. [c.290]

    Электронографический метод исследования подобен рентгенографическому. Он основан на дифракции электронов кристаллами. Важная особенность электронографии по сравнению с рентгенографией заключается в более сильном (на несколько порядков) взаимодействии электрона с веществом и малостью длины электронной волны, что позволяет исследовать на просвет структуру частиц размером 1 ч- 100 нм, т. е. коллоидной степени дисперсности. Электронографический метод был успешно использован при исследовании структуры многих коллоидных частиц, изучении поверхностных пленок, тонких адсорбционных слоев. [c.396]

    Из рис. XIV. 11 видно, что при адсорбции на винтовой дислокации кристалла ступеньки никогда не зарастают и должен возникнуть спиралеобразный кристалл. Микрофотографии и электронографии растущих кристаллов действительно позволяют обнаружить такие спирали. [c.282]

    Электронография. Этот> метод основан на явлении дифракции электронов на молекулах (и кристаллах), При встрече пучка электронов, характеризующихся длиной волны де Бройля X, с препятствием, имеющим размеры того же порядка, что и Л, возникает дифракция, соответствующая этой длине волны. [c.66]

    Для исследования структуры кристаллов применяют также электронографию. Поскольку электроны задерживаются веществом значительно сильнее, чем рентгеновские лучи, при электронографическом изучении твердых тел исследуют прохождение электронов через очень тонкие слои вещества, или изучают дифракцию электронов при отражении их от поверхности. Последний метод ценен тем, что он дает возможность определять структуру тонких поверхностных слоев, например покрывающих металлы пленок оксидов, нитридов и других соединений. [c.154]

    Точность определения периодов кристаллической решетки по электронной дифракции по сравнению с рентгеновской дифракцией невелика. Однако преимуществом электронографии является то, что при помощи ее можно получить информацию для кристаллов вещества размером 2—20 нм и их субмикроколичеств. Это же предъявляет высокие требования к чистоте проведения анализа, так как мельчайшие загрязнения на поверхности объекта дают собственную дифракционную картину. Электронографическим анализом решаются те же задачи, что и рентгенографическим анализом определение фазового состава и кристаллической структуры вещества, его текстуры, ориентировок и т. п. Метод электронографии применяют для анализа тонких [c.102]

    За последние годы для определения структуры кристаллов и молекул сравнительно широко применяется метод дифракции электронов (электронография). Метод заключается в том, что при действии пучка электронов на поверхность кристалла возникают те же дифракционные эффекты, что и при действии рентгеновских лучей. [c.59]

    Существенная особенность электронографического метода состоит в том, что в дифракции электронов принимают участие лишь поверхностные слои кристаллов, так как электроны даже в тонких слоях твердых тел сильно поглощаются. Поэтому электронография применяется главным образом для исследования тонких поверхностных слоев. [c.59]

    Изложение основ рентгеноструктурного анализа кристаллов было бы неполным без обсуждения его роли и места в системе современных физико-химических методов изучения вещества и его значения для решения химических задач. Прежде всего необходимо выяснить, в чем заключаются преимущества и недостатки рентгеноструктурного анализа по сравнению с другими родственными дифракционными методами — электронографическим и нейтронографическим. Далее следует сопоставить возможности дифракционных методов изучения строения вещества в разных агрегатных состояниях и прежде всего рентгеноструктурного анализа кристаллов, рентгенографии стекол и жидкостей и электронографии газов. [c.169]

    Степень размытости максимумов рассеивающей материи. В отдельно взятом (изолированном) атоме ядро занимает очень небольшой объем даже с учетом тепловых колебаний ядерная плотность представляется весьма острым максимумом. Максимум электронной плотности всей совокупности оболочек атома размыт значительно сильнее. Электростатическое поле ядра и электронов ослабляется при удалении от центра атомов еще медленнее (рис. 59, а). Это различие сохраняется, естественно, и в кристалле. Поэтому конечная точность фиксации координат ядер в нейтронографии, центров тяжести электронного облака в рентгеноструктурном анализе и максимумов силового поля в электронографии существенно разная и понижается в ряду НСА > РСА > ЭСА. [c.170]


    Требование к исследуемому образцу. Для получения дифракционного эффекта требуется кристалл определенного размера. Последний зависит от коэффициента рассеяния и быстроты поглощения лучей в веществе поток электронов полностью поглощается при прохождении через слой в несколько микронов рентгеновские лучи дают достаточную интенсивность рассеяния при пересечении слоя в 1 мм для ощутимого рассеяния потока нейтронов нужны уже не миллиметры, а сантиметры. Поэтому для рентгеноструктурных исследований необходим монокристалл с размерами в пределах 0,1 —1,0 мм. В частности, можно использовать игольчатые (нитевидные) кристаллы очень небольшого поперечного сечения. Для нейтронографического исследования обычно требуется более массивный монокристалл — размером в 0,5—1 см (что, впрочем, существенно зависит от интенсивности первичного пучка нейтронов). Получение таких монокристаллов часто составляет самостоятельную техническую проблему. Наоборот, в электронографии можно пользоваться лишь кристаллическими пленками. Обычно они создаются путем кристаллизации вещества на аморфной, прозрач- [c.172]

    Неравномерность зависимости интенсивности от угла рассеяния позволяет использовать дифракционный эффект для структурных исследований веществ в любом агрегатном состоянии. Сказанное в одинаковой мере относится к дифракции рентгеновских лучей, электронов и нейтронов. Помимо рентгеноструктурного анализа кристаллов наибольшее распространение и признание получили рентгенография стекол и особенно электронография газов и паров. [c.174]

    Электронография. Электронографическим методом иссле-дуют структуру молекул, кристаллов и аморфных тел. Электроны очень сильно рассеиваются при взаимодействии с электронами и атомными ядрами, входящими в состав изучаемого вещества, а потому непригодны для исследования массивных образцов. Зато они [c.199]

    Еще М. В. Ломоносов полагал, что внешняя форма кристалла есть отражение скрытого внутреннего строения и обусловлена правильным расположением частиц, составляющих кристалл. Сейчас правильность этого мнения доказана рентгенографией, электронографией и другими современными методами. Структура множества различных кристаллов полностью расшифрована. Наука, изучающая связь между химическим составом твердых фаз, кристаллическим строением и свойствами, называется кристаллохимией. [c.117]

    Анализ строения жидкостей с помощью уравнений (V. 3) и (V. 5) опирается, в сущности, на тот же подход к рещению проблемы, что и рентгенография кристаллов или электронография молекул. Во всех этих методах подбираются такие характеристики структуры (тип и параметры кристаллической решетки, валентные углы и межъядерные расстояния в молекулах, углы, определяющие взаимную ориентацию молекул в ассоциатах и комплексах), которые позволяют наиболее полно и корректно описать результаты систематических экспериментальных исследований. [c.110]

    Структуру кристаллов изучают в разделах естествознания, называемых кристаллофизикой и кристаллохимией. Содержанием кристаллохимии является установление зависимости условий образования и физико-химических свойств кристаллов от их структуры и состава, изучение энергетики и выяснение природы химической связи в кристаллах. Основным методом исследований в кристаллохимии является рентгеноструктурный анализ, использующий явление дифракции рентгеновского излучения на кристаллах, открытое М. Лауэ и др. (1912). В последние десятилетия получили широкое распространение методы электронографии (дифракция быстролетящих электронов на кристаллической решетке) и нейтронографии (дифракция медленных, тепловых нейтронов на кристаллах). Каждый из этих методов обладает спецификой применения, ввиду чего совокупность их позволяет проводить структурные исследования самых различных образцов, существенно различающихся по своей природе. [c.319]

    Предположение де Бронля о наличии у электрона волновых свойств получило экспериментальное подтверждение уже в 1927 г., когда К- Д. Девиссоном и Л. X. Джермером в США, Дж. П. Томсоном в Англин и П. С. Тартаковским в СССР независимо друг от друга было установлено, что прн взаимодействии пучка электронов с дифракционной решеткой (в качестве которой использовались кристаллы металлов) наблюдается такая же дифракпион-ная картина, как и при действии на кристаллическую решетку металла пучка рентгеновских лучей в этих опытах электро вел себя как волна, длпна которой в точности совпадала с вычисленной по уравнению де Бройля. В настоящее время волновые свойства электронов подтверждены большим числом опытов и широко используются в электронографии — методе изучения структуры веществ, основанном на дифракции электронов. [c.70]

    Фазовый состав катализаторов. Для общего фазового анализа катализаторов используются в основном два метода — рентгенография и дифракция электронов (электронография), хотя для некоторых специальных задач могут применяться и другие физические методы — магнитной восприимчивости, термография, ЭПР, различные виды спектроскопии. Практически наиболее широко применяется рентгенография, основанная иа дифракции характеристического рентгеновского излучения на поликристаллических образцах. Каждая фаза имеет свою кристаллическую решетку и, следовательно, дает вполне определенную дифракционную картину. На дебаеграмме каждой фазе соответствует определенная серия линий. Расположение линий на дебаеграмме определяется межплоскостными расстояниями кристалла, а их относительная интенсивность эависит от расположения атомов в элементарной ячейке. Межплоскостные расстояния d вычисляются по уравнению Брэгга—Вульфа  [c.379]

    Для изучения фазового состава поверхностного слоя катализаторов пользуются методом электронографии [27], так как глубина проникновения электронных лучей гораздо меньше рентгеновских и составляет величину порядка десятков и сотен ангстрем. Этот метод является также полезным при исследовании процесса образования новых фаз, когда количество новой фазы незначительно и кристаллы имеют малые размеры. В этом случае интенсивность рентгеновских рефлексов ничтожно мала и они теряются на фоне рентгенограммы, в то время как электронограмма дает отчетливую картину. Определение фазового состава поликристаллических веществ методом дифракции электронов обычно проводится по их межплоскостным расстояниям, рассчитываемым в свою очередь по формуле Брэгга—Вульфа. Точность определения межплоскостных расстояний по электро-нограммам значительно меньше, чем рентгеновским методом. [c.381]

    Небольшие видоизменения позволяют превратить электронный микроскоп в электронограф, с помощью которого получают элект-ронограммы. Дифракционная картина, фиксируемая при отражении кристаллом электронного луча, аналогична той, которая получается при дифракции рентгеновских лучей. [c.157]

    Электронографический анализ — один из методов изучения атомно-кристаллн-ческой структуры веществ, в котором используется дифракция потока движущихся электронов, обладающего волновыми свойствами. От рентгеновских лучей волны потока электронов отличаются меньшей длиной. При ускоряющем напряжении 30—100 кВ, которое применяют в электронографах, длина волны потока электронов колеблется в пределах 0,07—0,04 А, что в 20—30 раз меньше длин волн, используемых в рентгенографическом анализе. Кроме того, длина пробега электронного луча в исследуемом веществе по сравнению с рентгеновским меньше и обычно не превышает 100 А, так как электроны сильно взаимодействуют с веществом и быстро оглощаются в кристаллах, [c.105]

    С помощью электронографического анализа можно в принципе решать те же задачи, что и рентгенографическим анализом исследование кристаллической структуры, проведение фазового анализа, определение межплоскостных расстояний и периодов решетки, определение текстуры и ориентировки кристаллов и т. д. Однако особенности волновых свойств пучка электронов обусловливают и определенную специфику их использования, а также преимущества и недостатки по сравнению с рентгенографическим методом исследования кристаллов. Преимущество электронограмм заключается прежде всего в том, что в связи с малой длиной волны и сильным взаимодействием электронов с веществом этим методом можно получить резкие и интенсивные рефлексы при меньших размерах кристаллов и-меньшем количестве вещества, чем при рентгенографическом анализе, В рентгенографии, например, расширение линий начинается при р.эзмере частиц 500—900 А, а в электронографии оно становится заметным лишь при размерах 20—30 А. Интенсивность электронного луча гораздо больше, а необходимая экспозиция гораздо меньше, чем рентгеновских лучей, что дает существенные методические преимущества. Интенсивность отражений при дифракции электронов обычно настолько велика, что позволяет визуально на флюоресцирующем экране наблюдать дифракционную картину. Указанные особенности электронографии делают ее особенно ценной, например, при исследовании зародышей новых фаз. Электронография может использоваться также при изучении положений легких атомов в кристаллической решетке, хотя для этого более пригодна нейтронография, [c.105]

    Отмеченные обстоятельства требуют более глубокого, чем ранее, ознакомления студентов-химикрв с вопросами строения вещества на первом курсе вузов. С этой целью написана данная книга. В ней изложены современные представления о строении атомов, молекул, кристаллов и природе химической связи рассмотрены некоторые методы исследования структуры. При изложении методов структурного исследования основное внимание уделено газовой электронографии. Это сделано по двум причинам. Во-первых, электронография, использующая дифракцию электронов, на наш взгляд, является наиболее яркой иллюстрацией представления о волновых свойствах материальных частиц, лежащего в основе квантовой механики. Во-вторых, [c.3]

    Электронографический анализ. Как и рентгенографический анализ, этот метод основан на дифракции. В обычном электронографическом методе для облучения используюхся электроны, ускоренные до энергии 30—80 кэВ. В последнее время начинает развиваться электронография на электронах с энергией 400 кэВ. Для исследования строения самых внешних слоев твердого тела применяют медленные электроны с энергией 10—100 эВ. В связи с тем что длины волн для пучка электронов могут быть меньше, чем у рентгеновского излучения, электронографический анализ может применяться для исследования кристаллов значительно меньшего размера, исследуются также тонкие пленки, порошки, поверхностные слои массивных образцов. [c.209]

    Требование к исследуемому образцу. Для получения дифракционного эффекта требуется кристалл определенного размера. Последний зависит от коэффициента рассеяния и быстроты поглощения лучей в веществе поток электронов полностью поглощается при про.хождении через слой в несколько микронов ренггеновские лучи дают достаточную интенсивность рассеяния при пересечении слоя в 1 мм для ощутимого рассеяния потока нейтронов нужны уже не миллиметры, а сантиметры. Поэтому для рентгеноструктурных исследований необходим монокристалл с размерами в пределах 0,1 —1,0 мм. В частности, можно использовать игольчатые (нитевидные) кристаллы очень небольшого поперечного сечения. Для нейтронографического исследования обычно требуется более массивный монокристалл — размером в 0,5—1 см (что, впрочем, существенно зависит от интенсивности первичного пучка нейтронов). Получение таких монокристаллов часто составляет самостоятельную техническую проблему. Наоборот, в электронографии можно пользоваться лишь кристаллическими пленками. Обычно они создаются путем кристаллизации вещества на аморфной, прозрачной для электронов подложке. При этом, как правило, возникает не монокристальная, а поликристалличе-ская пленка. Для структурного анализа, однако, важно, чтобы кристаллики пленки имели в ней некоторую преимущественную ориентацию. Добиться кристаллизации такой текстурированной пленки удается не всегда. [c.128]

    В книге изложены теоретические и экспериментальные основы рентгенографии, электронографии и нейтронографии жидкостей и аморфных тел отражены общие представления о природе химических связей и межмолекулярных снл приведены основные результаты исследований строения молекул, структуры жидких металлов и сплавов, индивидуальных молекулярных жидкостей, жидких кристаллов водных растворов электролитов н аморфных тел. Изложены вопросы методики и результаты рентгенографических и электромографических исследований некоторых аморфных простейших по составу веществ и высокомолекулярных соединений. Помимо литературных источников книга содержит результаты исследований автора. [c.2]

    Дифракционные методы. В дифракционных методах исследования рентгеновское излучение, поток электронов или нейтронов взаимодействуют с атомами в молекулах, жидкостях или кристаллах. При этом исследуемое вешество играет роль дифракционной решетки. А длина волны рентгеновских квантов, электронов и нейтронов должна быть соизмерима с межатомными расстояниями в молекулах или между частицами в жидкостях и твердых телах. Сама же дифракция (закономерное чередование максимумов и минимумов) представляет собой результат интерференции волн. Она зависит от химического и кристаллохимического строения, следовательно, соответствует структуре исследуемого вещества. Поэтому есть принципиальная возможность для решения обратной задачи дифракции, т. е. установление структуры вещества по его дифракционной картине. Обратная задача дифракции для рентгеновского излучения, дифрагирующего в конденсированных средах, называется рентгеноструктурным анализом. Методы применения электронных и нейтронных пучков вместо рентгеновского излучения называются электронографией и нейтронографией соответственно. Общим для этих методов является анализ углового распределения интенсивности рассеянного рентгеновского излучения, нейтронов и электронов в результате взаимодействия с веществом. Но природа рассеяния рентгеновских квантов, нейтронов и электронов не одинакова. Рентгеновское излучение рассеивается электронами атомов, входящими в состав вещества. Нейтроны же рассеиваются атомными ядрами а электроны — электрическим полем ядер и электронных оболочек атомов. Интенсивность рассеяния электронов пропорциональна электростатическому потенциалу атомов. [c.195]

    Исследователи не пришли к общему выводу относительно того, как образуются гидросиликаты только через растворение СдЗ, в воде, путем протекания серии реакций в твердом состоянии или последовательным сочетанием этих явлений. Например, в недавних исследованиях [127] гидратации СдЗ методами электронной микроскопии и электронографии сообщается о том, что гидратация СдЗ начинается в момент соприкосновения с водой и протекает через раствор. На поверхности минерала первоначально образуются бугорки роста, размер которых увеличивается до 500 А, за счет наслоения на них игольчатых кристаллов трехкальциевого гидросиликата [236]. Процесс гидратации протекает метасоматическим замещением с выносом части вещества через агрегатно-ритмичную структуру. Вместе с тем другие исследователи [229], использовавшие подобные методы изучения гидратации СдЗ, установили, что в гидратированном СдЗ имеется два типа различных гидратных продуктов. Один, плотно окружающий частички гидратировавшегося СдЗ (ангидрида ЗСаО ЗЮг), имеющий соотношение Са/81— 1,7 0,1 и С — 5 — Н гель, почти такой же, как в портланд-цементе. Другой тип гидрата —Са (0Н)2 в виде больших гранул, расположенных вокруг зерен СдЗ, иногда поглощающий маленькие частицы гидросиликатов. По их мнению, СдЗ гидратируется в основном топотак-тически, как описано Кондо [58]. При этом Са " транспортируется в раствор с выпадением Са (0Н)г вокруг ядер СдЗ. [c.76]


Смотреть страницы где упоминается термин Электронография кристаллы: [c.412]    [c.129]    [c.531]    [c.129]    [c.8]    [c.9]    [c.236]    [c.126]    [c.130]    [c.201]   
Водородная связь (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Электронография



© 2025 chem21.info Реклама на сайте