Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пропилен давлении

Рис. 7.7. Кинетика образования основных продуктов пиролиза фракции 85-120 С при 810 С и атмосферном давлении 1 —жидкие продукты (С и выше) 3 — этилен 3 — метан 4 — пропилен/ 5 — этан 6 — бутадиен 7 — бутен (Данные Р.З. Магарил) Рис. 7.7. <a href="/info/24721">Кинетика образования</a> основных <a href="/info/384319">продуктов пиролиза фракции</a> 85-120 С при 810 С и <a href="/info/17581">атмосферном давлении</a> 1 —<a href="/info/219306">жидкие продукты</a> (С и выше) 3 — этилен 3 — метан 4 — пропилен/ 5 — этан 6 — бутадиен 7 — бутен (Данные Р.З. Магарил)

    Хранилища сжиженных газов могут быть подземными и наземными. В подземных хранилищах в больщинстве случаев хранят сжиженные углеводородные газы под незначительным избыточным давлением (изотермические хранилища) при температуре несколько ниже температуры кипения углеводорода при данном давлении. В этих хранилищах, как правило, хранят большие объемы сжиженных углеводородных газов (пропан, изобутан, пропилен, пропан-бутановые смеси и др.) и ЛВЖ, так как этот способ хранения является более безопасным и в значительной мере позволяет уменьшить масштабы и тяжесть последствий возможных пожаров и взрывов. [c.166]

    Содимеризация пропилена с этиленом при образовании изопен-тенов осуществляется взаимодействием триэтилалюминия (как источника этилена) с пропиленом в алифатических или ароматических углеводородах, служащих растворителями [120]. Основной продукт реакции — 2-метилбутен-1. Реакция проводится преимущественно при 100—180 °С и под давлением 13—65 кгс м , продолжительность реакции от 30 мин до 6 ч, соотношение триэтилалюминий пропилен = 1 3 8. Наряду с основным продуктом образуются бутены и гексены 2-метилбутен-1 отделяется от них фракционированием. [c.237]

    Давно известный метод автотермического дегидрирования этана в этилен (рис. 12) усовершенствован в настоящее время для дегидрирования природных газов [93]. В реакторе с керамической футеровкой теплоносителем являются фарфоровые шарики. Газовая смесь из этана и пропана вводится в реактор вместе с чистым кислородом и сжигается не до конца при 850—900 °С. Давление 0,6 кгс/см2, время контакта 1с. При этом получаются следующие продукты этилен, пропилен, метан, окись и двуокись углерода. [c.35]

    Из исследований Циглера вытекает, что под влиянием АШд олефины вступают в реакцию олигомеризации. Например, пропилен димеризуется в присутствии трипропилалюминия [5а], растворенного в инертном растворителе. Это экзотермическая реакция, протекающая при 150—250 °С (оптимально 200—210 °С) и под давлением 200 кгс/см2, конверсия достигает 60—95%. Главным продуктом димеризации в данном случае является 2-метилпентен-1  [c.215]

Рис. 71. Влияние состава смеси этилен — пропилен на сополимеризацию (растворитель бензин с температурой кипения 60—90 С, температура 5 °С, давление 1 кгс/см ) Рис. 71. Влияние состава <a href="/info/675498">смеси этилен</a> — пропилен на сополимеризацию (<a href="/info/39387">растворитель бензин</a> с <a href="/info/6377">температурой кипения</a> 60—90 С, температура 5 °С, давление 1 кгс/см )

    Пропилен. 560 г смеси, состоящей из 94,5% пропилена и 5,5% пропана, загружалось [30] в 3-л вращающийся стальной автоклав. Автоклав нагревался 12 час. при 375°, так как при 330° термическая полимеризация пропилена шла очень медленно, это видно из того, что давление за 3 часа снизилось всего на 3 кг/см . При 375° в течение 10 час. давление снижалось от максимального в 214 до 54 кг/см . В результате реакции получалось 471 г жидкого продукта и 88 г газа, состоявшего из не вступивших в реакцию пропилена и пропана. Отсутствие других газов показывает, что крекинга не было. [c.188]

    В работе [34] сообщается о применении теплового насоса на верхнем продукте для разделения смеси пропилен — пропан. При компримировании паров верхнего продукта (пропилена) до необходимого давления получается избыток тепла, который снимается в специальных концевых холодильниках водой или воздухом (рис. У-25). [c.303]

    При получении пропилена [1—41 из нефтезаводских газов выделяют преимущественно смесь пропана с.пропиленом, содержащую около 40—60% пропилена. При разделении крекинг-газов путем низкотемпературной ректификации под давлением получается пропиленовая фракция с содержанием пропилена от 80 до 95%. [c.47]

    Результаты, полученные Рунге при гидратации пропилена в газовой фазе, представлены в табл. 7. Из таблицы видно, что конверсия пропилена увеличивается при повышении давления и соотношения вода пропилен. Однако уровень нужного давления зависит от уровня температуры, так как для достижения максимальной конверсии давление должно лежать лишь немного ниже точки насыщения на основании законов термодинамики. Высший предел температуры опять же зависит от активности катализатора. [c.63]

    Всеобщее внимание привлекли публикации и патенты [74—8 il, в которых описан метод одновременного получения окиси пропилепа и стирола. В этом процессе исходными продуктами являются этилбензол и пропилен. Этилбензол при 130 °С и давлении около 3,5 кгс/см в присутствии катализатора нафтената молибдена под воздействием кислорода превращается в гидроперекись а-этилбен-зола. При одноразовом проходе конверсия достигает 13%, а выход — 84%. Из гидроперекиси а-этилбензола при взаимодействии с пропиленом при 110 °С в присутствии нафтената молибдена образуются фенилметилкарбинол и окись пропилена. В результате отщепления воды от фенилметилкарбинола получается стирол. При использовании в качестве катализатора двуокиси титана и температурах 182— 282 С (оптимально 200—250 С) выход стирола составляет 80—95%. [c.82]

    Метод разбавленной кислоты. По методу разбавленной кислоты [28—35] пропилен абсорбируется под давлением 25 кгс/см при [c.57]

    Во время второй мировой войны тщательно исследовали вольфрамсодержащие катализаторы. Наиболее подходящей оказалась окись вольфрама, активированная окисью цинка и нанесенная на активный силикагель. При соотношении пропилен водяной пар = 1 10, температуре 230—240 С, давлении 200—250 кгс/см2 н 50%-ной конверсии пропилена за проход можно получить конечный выход изопропилового спирта 95%. Однако выход в единицу времени на единицу объема будет очень низким 0,8 кг изопропилового спирта на 1 л катализатора в 1 день [661. [c.62]

    Из оставшихся газообразных фракций, содержащих наряду с пропиленом кислород, азот, окись и двуокись углерода, выделяют окись углерода и превращают ее в двуокись, которую затем удаляют промывкой щелочью. В оставшиеся газы добавляют отработанный пропилен с кислородом, и смесь снова подают через компрессор в окислительный реактор. При дистилляции экстракционной воды при нормальном давлении на 1000 кг израсходованного пропилена получают следующие продукты окисления (в кг)  [c.81]

    Для получения однородной фракции пропиленовых тетрамеров смешивают исходный продукт — смесь пропана с пропиленом — с димерной и тримерной частью из циркуляции и полученную смесь доводят до реакции при 170—220 °С и давлении 14—42 кгс/см . Температура в различных местах слоя катализатора поддерживается постоянной путем вдувания пропана. Реакционные продукты разделяются перегонкой и тетрамер извлекается как фракция, кипяш ая при 177—230 °С (или при 188—200 °С при повышенных требованиях [14]). Ниже указан расход исходных продуктов и выход реакционных продуктов, получаемых на установке UOP при конверсии пропилена 92,3% [151  [c.245]

    Пропилен подвергался каталитической полимеризации в присутствии разбавленной фосфорной кислоты при температуре выше 250° и давлении 150 ат или выше. Графическое изображение зависимости состава полимера от степени полимеризации сырья при температурах от 260 до 305° и давлениях от 170 до 400 ат в присутствии 10 и 30 %-пой ортофосфорной кислоты приводит к заключению, что в пределах этого режима единственной переменной величиной, которая сказывается иа составе полимеров, является степень полимеризации сырья. При постоянном составе сырья при этих условиях температура, давление и концентрация кислоты (катализатора) не оказывают влияния на состав продукта, которое мол но было бы обнаружить при помощи используемых аналитических методов. [c.195]


    Фтористый водород также является хорошим катализатором алкилирования. В его присутствии можно употреблять пропилен с содержанием этилена, так как последний значительно более инертен. Например, прп алкилировании бензолом при комнатной температуре н нормальном давлении в присутствии фтористого водорода смесь, содержащая наряду с этаном и метаном 19% пропилена [c.268]

    Для проведения полимеризации (рис. 69) чистый пропилен, суспензию катализатора и разбавитель подают в реактор. Смесь при перемешивании нагревается до 50—100 °С, при этом давление поднимается максимум до 5 кгс/см . Добавляемое количество катализатора (0,25—0,50 вес. % от взятого растворителя) зависит в известной мере от степени чистоты мономера и растворителя. К катализатору добавляется примерно равное количество активатора. [c.299]

    Процесс Температура, С Давление, МПа Соотношение бензол пропилен Выход изопропилбензола. % Примечания [c.172]

    Опыт эксплуатации за рубежом и отечественные опытно-промышленные разработки показываю-т, что в изотермических хранилищах при атмосферном давлении и соответствующих температурах можно хранить сжиженные пропан, изобутан, пропилен, аммиак, пропан-бутановые смеси и другие сжиженные газы. [c.290]

    Кук обнаружил образование окиси пропилепа в результате окисления пропана при умеренных давлениях в сосуде с насадкой, обладающей неактивной поверхностью [14]. Дальнейшие сведения об этом процессе отсутствуют, но мон<но предполагать, что пропилен, по-видимому, был промежуточным продуктом реакции. [c.335]

    Пропилен также полимеризуется весьма незначительно при обработке его 96%-ной серной кислотой [59 при атмосферном давлении и ком-, натной температуре. В качестве основного продукта получается изопропил-сульфат, гидролиз которого дает изопропиловый спирт. При обработке пропилена 98 %-ной серной кислотой образуется смешанный полимер. [c.190]

    В подобных же опытах [19] при 160°, давлении 10 ат и при часовой объемной скорости жидкости 0,3 пропилен давал 43% вес. полимера, содержавшего 50% ноненов и 20—25% додеценов. [c.197]

    Существенным преимуществом схем с тепловым насосом при разделении смеси пропилен — пропан является значительное увеличение их относительных летучестей при пониженном давлении процесса, что и приводит в итоге к снижению не только эяе1ргети-ческих, но и капитальных затрат, требуемых для получения заданных высоких показателей разделения этой смеси. [c.304]

    Схемы управления сложными системами ректификации со связанными материальными и тепловыми потоками проиллюстрируем на примере двух ректификационных колонн для разделения смеси пропилен — пропан и метанол — вода (рис. У1-35) [28]. Особенности технологических схем этих процессов состоят в том, что питание в обе колонны разделяется П риме,рно поровну и кубовый продукт второй колонны подогревается в дефлегматоре первой колонны, которая работает при большем давлении, чем втррая. Вторая схема отличается от первой установкой дополнительных конденсатора и кипятильника. Составы верхних цродуктов колонн высокого и низкого давлений используются в качестве корректирующего сигнала для. регулирования расходов орошения и дистиллята состав нижнего продукта колонны высокого (а) или низкого (б) давлений используется для коррекции расхода тепла в колонну. [c.342]

    При синтезе Фишера—Тропша как побочный продукт образуется пропилен. Его количество зависит от катализатора и условий реакции. При нормальном давлении и температуре реакции 175—210 °С на кобальтовых катализаторах фракция С3—С4 содержит до 43% олефинов [35]. Аналогичное содержание олефинов наблюдается при 100 °С и среднем давлении 10 кгс/см . [c.9]

    Рекомпрессионная дистилляция [2] (рис. 17, а) осуществляется под давлением 7—14 кгс/см . Для нее требуется всего одна колонна с 80—100 тарелками. Исходный пропилен, содержащий менее 2 % [c.49]

    Эффективными промоторами окисления акролеина кислородом являются триалкил- или триарилфосфаты. В присутствии стеарата N1 и трибутилфосфата акролеин окисляется в акриловую кислоту в бензоле при 65 °С и 6 кгс/см с конверсией 28% и селективностью 87,5% [125]. Промоторами при окислении акролеина кислородом в жидкой фазе, могут быть и ароматические нитросоединения, например, возможно окисление при 50 °С и 5 кгс/см в гексане в присутствии нитробензола [126, 127]. При 75 °С смесь пропан — пропилен окисляется с образованием окиси пропилена или акриловой кислоты [128]. Предложен целый ряд катализаторов для окисления акролеина в бензоле молибдат Сн (при 50 °С и давлении кислорода 10 кгс/см получают 67% акриловой кислоты) молибдат Т1 (62%), молибдат Со (64%), смесь молибдатов [129], иод [130]. Возможно окисление под давлением и без добавки катализатора (при 25—30 °С и давлешш кислорода 5 кгс/см конверсия 32%) [131]. [c.157]

    Первый метод аналогичен используемому для этилена. Пропилен или газы, содержащие пропилен, абсорбируются под давлением в 94%-ной серной кислоте при 20 °С. Образующаяся смесь моно-и диизопропилсульфатов омыляется после разбавления водой, затем изопропиловый спирт и диизонропиловый спирт, являющиеся побочными продуктами, отгоняются водяным паром. Разбавленную кислоту регенерируют и возвращают в процесс. [c.55]

    Жидкофазная сернокислотная гидратация пропилена [102] позволяет изготовлять 30—40%-ный пропилен, и в этом заключается преимущество метода. Процесс осуществляется при низком давлении и высокой степени превращения, изопропиловый спирт получается более высокой концентрации, чем при газофазной гидратации. Недостатком является применение серной кислоты и связанные с этим проблемы коррозии, а также пеобходилюсть концентрирования (упарки) возвращаемой в процесс кислоты и, наконец, высокий расход кпслоты. Тем не менее, на сегодняшний день жидкофазная гидратация считается более экономичной по сравнению с газофазной. [c.65]

    Это привело к разработке нового процесса в 1946—1947 гг. фирмой Shell Development o. [26г Пропилен вместе с воздухом и водяным паром пропускали при 370—400 °С и небольшом давлении в присутствии 0,03 мол. % изопропилхлорида через окись меди (I) на карбиде кремния. Максимальный выход акролеина равнялся 51 %. Повышение давления кислорода увеличивает выход акролеина до 68— 81% [27]. В промышленном масштабе конверсия пропилена составляет 14% при 368 °С и объемном соотношении пропилен водяной пар кислород = 4,4 4,7 1 в присутствии 0,4% окиси меди (I) на карбиде кремния. Выход акролеина колеблется в пределах 65— 85% [28]. [c.95]

    Воздух используется в качестве окислителя. Соотношение кислород пропилен варьируется в пределах от 1 1 до 2 1, а соотношение аммиак пропплеп — от 1 1 до 2,5 1. На каждый объем пропилена добавляют приблизительно один объем пара. Реакцию проводят при 425—510 °С, давлении 2 — 3 кгс/см и времени контакта - 15 с в реакторе с кипяш,им слоем (рис. 37). [c.120]

    Пропилен. Полимеризация пропилена (95% СзН и5. % СзНв) в присутствии твердой фосфорной кислоты как катализатора [22с] при температуре от 150 до 250° и давлении 10 ат показала, что скорость полимеризации зависит главным образом от температуры, состава катализатора и метода его приготовления. В этих опытах от 80 до 93% пропилена превращалось в смесь жидких моноолефинов, состоявших из небольшого количества гексеновой фракции, очень большой ноненовой фракции и небольшого количества более высококипящих олефинов, главным образом тетрамеров и пентамеров пропилена. При разбавлении пропилена пропа- [c.196]

    Для обеспечения жидкой фазы алкилирование проводится под давлением 11,5 кгс/см при. 30—40 °С. Мольное отношение пропилен бензол = 1 5, объемное отношение углеводород Н2804 = = 1 1. При интенсивном перемешивании алкилирование оканчивается через 20—30 мин, конверсия пропилена достигает 100%. На 1 объем Н2804 можно получить 12—16 объемов сырого кумола. [c.265]

    Алкилирование бензола пропиленом можно осуществить и в присутствии Al lg при нормальном или повышенном давлении [31]. Исходным продуктом и здесь может служить тиофенсодержащий бензол [32]. Для достижения оптимальных величин конверсии необходимо работать в несколько влажной среде. При использовании Al lg можно отметить следующие недостатки  [c.266]

    Несмотря на указанные трудности, способ с использованием хлористого алюминия находит все более широкое применение (рис. 67). Реакция происходит практически без давления при 50—70 °С в реакционных башнях высотой 15 м. В этих условиях имеет место каталитическое переалкилирование, поэтому высокоалкилированные продукты целесообразно снова возвращать в процесс. Оптимальное отношение бензол пропилен составляет примерно 4,5- 4,7 1, выход 98% в расчете на бензол, расход катализатора 0,025 г/кг кумола. [c.266]

    По методу SheU Oil o. очищенный бензол и смесь пропан — пропилен смешиваются друг с другом и через испаритель подаются в реактор. Максимальная температура реактора 300 °С, он работает под давлением 18—28 кгс/см . Тепло реакции отводится с помощью наружного охлаждения. Выходящие пары после охлаждения подаются для удаления пропана в колонну, которая работает при 200 °С и 12 кгс/см 2. Продукт из нижней части колонны попадает в колонну для отгонки бензола, а оставшаяся часть продукта подается в колонну для перегонки и получения чистого кумола. [c.269]

    Сополимеризацию можно проводить так же, как полимеризацию пропилена (см. рис. 69). При периодическом методе реакцию проводят в автоклаве, куда при —65 °С сначала вводят жидкий пропилен, а затем подают этилен под таким давлением, чтобы газ был нужного состава. Оба компонента могут быть растворены в гептане, циклогек-саие или бензоле. Компоненты катализатора подают отдельно в виде растворов в углеводородах. Полимеризация продолжается примерно 10—40 мпн, после чего ее прекращают добавкой спирта. Для удаления соединений ванадия и алюминия реакционную смесь обрабатывают кислотами. После очистки добавляют антиоксиданты для стабилизации сополимера. [c.313]

    При непрерывном методе сонолимеризации [79] применяется катализаторная система А1(изо-С4Н9) + VO lj в бензольном растворе отношение А1 V = 4 1. Смесь этилен-пропилен (1 3,45) и раствор катализатора подаются одновременно. Реакция происходит при температуре 39 С под давлением 5 кгс/см . [c.313]

    Пример III.2. В ректификационную колонну подается бинарная смесь иронан — пропилен с начальным мольным содержанием пиакокинящего компонента Xj =0,600. Колонна работает под давлением р=1,96 МПа, а сырье подается при температуре начала кипения. Мольные доли пропилена в дистилляте и остатке соответственно составляют Хд=0,950.и Хд=0,100. [c.201]

    Полимеризация изобутилена шла быстро даже ири 28° с образованием полимеров, в которых 21 % водорода был замещен дейтерием. В незаполи-меризовавшемся изобутилене 8% водорода было замещено дейтерием. При аналогичных условиях полимеризация и дейтерообмен н-бутилена шли значительно медленнее, чем в реакциях изобутилена, а пропилена и этилена еще медленнее. По-видимому, полимеризация изобутилена в температурных пределах 125—206° и дейтерообмен незаполимеризо-вавшегося изобутилена не зависят в какой-либо степени от температуры. При начальном давлении 289 мм и при температуре 120° образовавшийся полимер периодически отбирался и анализировался. Результаты показывают, что содержание дейтерия во фракции полимера со временем возрастало. Содерн<ание дейтерия в остаточном изобутилене составляло 34 %, а в полимере оно возросло от 22 до 40 % при увеличении продолжительности реакции от 25 до 265 мин. В опыте с пропиленом температура поддерживалась в течение 1,5 часа при 102°, а затем в течение следующих [c.195]


Смотреть страницы где упоминается термин Пропилен давлении: [c.146]    [c.54]    [c.77]    [c.305]    [c.306]    [c.413]    [c.190]   
Подготовка сырья для нефтехимии (1966) -- [ c.127 , c.128 ]




ПОИСК





Смотрите так же термины и статьи:

Зависимость процесса переноса цепи от парциального давления пропилена

Окисление пропилена в жидкой фазе под давлением

Полиэтилен этилена с пропиленом низкого давления

Пропилен давление плавления

Пропилен смесь с воздухом, максимальное давление при воспламенении

Пропилен, давление насыщенного пара

Сополимер этилена с пропиленом низкого давления

Сополимер этилена с пропиленом низкого давления (модифицированный полиэтилен)

Сополимер этилена с пропиленом низкого давления СЭП теплофизические свойства

Сополимер этилена с пропиленом среднего давления

Чирков и В. И. Цветкова. Гидратация пропилена при повышенном давлении на фосфорнокислотных катализаторах

Этилен 79. Пропилен 84. Вутилены 86. Амилены 88. Высшие олефины 90. Пиролиз олефинов под давлением 91. Диолефины 93. Общие выводы о термических реакциях олефиновых углеводородов 94. Термическое разложение ацетилена

Этилен и пропилен, выделение при низком давлении



© 2025 chem21.info Реклама на сайте