Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление конверсии метана

    Метан является главной составной частью природного газа. Каталитическая конверсия природного газа — основной метод получения водорода в промышленности, и в первую очередь — для синтеза аммиака. Процесс проводят в интервале температур 400—1200° С при давлениях от 1 до 30 атм на катализаторах, активным компонентом которых является никель. [c.3]


    Катализаторы конверсии бензиновых фракций с водяным паром при средних температурах, низком давлении с целью получения газа для нагрева и отопления. Конверсией жидких углеводородов при средних температурах можно получить (в зависимости от выбранных условий) в качестве основных продуктов как метан, так и водород. Получение метансодержащего газа не связано с необходимостью подвода тепла в зону реакции извне и осуществляется в аппаратах шахтного типа при умеренных температурах. Получение водородсодержащего газа из бензина требует более высоких [c.42]

    Паровая конверсия метана без катализатора протекает с приемлемой скоростью и глубиной превращения на шамотной насадке только-при температурах 1250—1350 °С [19]. Опыты, выполненные в пустотелом кварцевом реакторе [20], показали, что при объемной скорости 200 ч , отношении пар газ, равном 2 1, и атмосферном давлении даже при 1000 °С степень конверсии метана не превышает 8—9%, а при 900 °С она равна всего 1,1%. При температурах 760—800 °С паровая конверсия метана вообще не протекает [21]. В случае нагревания гомологов метана в смеси с водяным паром без катализатора выше 500—600 °С протекают с большой скоростью процессы пиролиза с образованием непредельных углеводородов (этилена, пропилена и др.). В процессе пиролиза образуются также метан, этан, пропан п в относительно небольших количествах — водород. [c.79]

    Водород соответствующей концентрации может быть получен варьированием давления, температуры и отношения пар метан. Связь между этими параметрами иллюстрируется рис. 22 и 23. Как видно из рисунков, режим процесса можно менять в широком диапазоне, однако технические возможности оборудования, а также режимы других стадий производства и выпадение углерода при определенных граничных условиях значительно сужают этот диапазон. Результаты расчетов минимального расхода пара, ниже которого выпадает углерод, показаны на рис. 24. Расход пара на конверсию метана должен быть не ниже 2 1, чтобы предотвратить выпадение углерода, но такое соотношение не применяется, поскольку в этом случае пар приходится добавлять на стадии паровой конверсии окиси углерода. В реакторе паровой конверсии на подачу избыточного пара расходуется дополнительное тепло, но оно возвращается в котле-утилизаторе. Подача избыточного пара улучшает теплопередачу. Поэтому обычно на 1 м метана при низком давлении расходуется не менее 3 м пара, а при давлении 2 МПа его требуется 4—5 м . [c.72]


    Паровую каталитическую конверсию природного газа при средней температуре и среднем или высоком давлении применяют в очень крупном промышленном масштабе. Основными направлениями усовершенствования режимов использования катализаторов в этих условиях является снижение удельного расхода пара на конверсию углеводородного сырья (см. табл. 14). На промышленных установках первичной конверсии метана мольное соотношение пар метан доходит до четырех. Как следует из табл. 14, это соотношение может быть уменьшено более чем в два раза, что существенно сократит затраты на производство аммиака и метанола. [c.36]

    Бутановую фракцию в смеси с водяным паром при мольном соотношении 1 8,1 конвертируют при температуре 300 С, давлении 5 ат и скорости подачи сырья 1000 ч . Образующиеся газы, содержащие около 79% метана, подают на стадию высокотемпературной конверсии, которую проводят на никелевом катализаторе при температуре 820 С и объемной скорости 1800 ч (в расчете на метан). При этом получают газ с высоким содержанием водорода [c.121]

    Процесс конверсии ведут с водяным паром при давлении 150—200 бар. Сырье вводят на катализатор при температуре 500—660° С, объемной скорости I—15, соотношении водяной пар углерод, равным 3—4 1. Внутренний диаметр зоны конверсии равен 10—100 мм, полезная длина — 6—15 мм. Этим способом при температуре 700—900° С можно получить водород или газ для синтеза аммиака, либо при температуре 500—750° С— городской газ, обогащенный метаном [c.155]

    Синтез-газ (от процесса получения ацетилена) и метан, предварительно увлажненные в сатурационной башне, орошаемой горячей водой, подогреваются до 450° С, смешиваются с кислородом в соотношении 1,5 1 и поступают в конвертор метана, где происходит конверсия метана с кислородом и паром на никелевом катализаторе при 1100° С и давлении 0,6—0,7 ат. Содержание метана по выходе из конвертора не должно превышать 0,3—0,5%. Конвертированный газ увлажняется впрыскиванием конденсата и добавлением пара до соотношения пар газ—0,68 1, охлаждается свежим синтез-газом до 400°С и подается в конвертор окиси углерода, где при 500° С взаимодействует с паром на железо-хромовом катализаторе до содержания окиси углерода в конвертированном газе около-4%. Затем охлажденный до 30°С газ очищается от двуокиси углерода абсорбцией водным раствором моноэтаноламина в насадочных скрубберах в две ступени при давлении 0,15 и 30 ат. [c.335]

    Повышение давления положительно влияет на процесс низкотемпературного риформинга, в частности конверсия окиси и двуокиси углерода в метан, выделяемая иногда в отдельную ступень процесса, требует высоких давлений. Все низкотемпературные процессы риформинга осуществляются под давлением 20 кгс/см2 и выше. [c.94]

    Тем не Менее метан И другие легкие углеводороды образуются по реакции пиролиза при переработке сырой ефти в процессе фракционирования при атмосферном давлении, когда не-конденсированный газ верхнего погона содержит водород, метан и этан. Газ получают также при каталитическом крекинге, в процессе конверсии газойля и других средних дистиллятов в бензин, в результате чего образуется значительное количество побочных газов (водорода, метана, этана и этилена), которые затем выводят как неконденсируемый поток в верхней части системы. [c.97]

    Протеканию этих нежелательных реакций способствуют низкие температуры конверсии (ниже 350° С) и в особенности повышенное давление. В результате реакции гидрирования теряются значительные количества водорода и происходит загрязнение водорода метаном образование двуокиси углерода приводит к интенсивному отложению углерода на катализаторе. [c.122]

    Термодинамические расчеты паровой конверсии алифатических углеводородов, начиная с 300 °С, можно вести, используя уравнения паровой конверсии метана (2) и окиси углерода (3), а также уравнение паровой конверсии гомологов метана в метан (1). С учетом последнего уравнения стехиометрнческие соотношения компонентов и их парциальные давления в паровой конверсии алифатических углеводородов принимают значения, приведенные в табл. 19. [c.69]

    Поскольку конверсия окислов углерода в метан происходит почти полностью, то газ на выходе содержит около 1,7% СН4, 2% Н2О и 70% На- При атмосферном давлении равновесные концентрации окиси углерода и двуокиси углерода составляют Рсо = 3,96х XlO-i атм, Рсо, = 2,88-10 атм, т. е. концентрация СО составляет 3,96-10 ч млн, а концентрация СО2 — 2,88-10 ч/млн. При более высоких давлениях равновесные концентрации увеличиваются. Очевидна малая вероятность того, что производительность катализатора лимитируется приближением к равновесию. При нормальных концентрациях на выходе метанирование является реакцией [c.144]

    Чем выше температура, тем меньше влияние на степень конверсии метана оказывают давление и разбавление паром. При температурах выше 1200°С метан конвертирует практически полностью, даже при дав.ие-нии в 10,0 МПа. [c.30]


    С повышением давления от нормального до 100 ат закономерно увеличиваются выходы продуктов от 163 до 216 с одновременным ростом кислородсодержащих соединений от 7 до 30% и олефинов от 39 до 56%. Большое значение имеет температура процесса. До 200° протекает лишь реакция образования O -f H O, в интервале 210—220° при конверсии СО до 90% получается 185 г углеводородов на 1 СО (метана образуется лишь 4 г, или 3%), при 230°—200 г углеводородов на 1 СО (96% от теоретического количества). С повышением температуры нарастает образование метана (выше 300 практически получается только метан). Если вести процесс при давлениях выше 30 ат, получаются кислородсодержащие соединения—главным образом спирты, среди которых преобладает этиловый спирт. Получающиеся углеводороды представляют собой смесь олефинов и парафинов (от газообразных до твердых парафинов). [c.701]

    На рис. 4 показана зависимость между расходом тепла, подводимого к реагирующим веществам за 1 ч на 1 внутренней поверхности, и остаточным содержанием метана в конвертированном газе. При одинаковом остаточном содержании метана расход тепла в опытах с метаном и бутаном оставался практически одинаковым, хотя объемная скорость при конверсии метана была значительно больше. Это также указывает на то, что для нагрева дополнительной воды, присутствовавшей в опытах с бутаном, расходовалось дополнительное количество тепла. Увеличение расхода тепла при конверсии обоих исходных углеводородов под давлением 10 ат по сравнению с расходом при 23 ат обусловлено повышенными объемными скоростями, достигаемыми при более низком -давлении п неизменном остаточном содержании метана. [c.177]

    Конверсия метана в промышленном реакторе протекает вблизи равновесия. Соответствующее содержание СО, Н2 и Н2О, ответственных за образование сажи (углерода), для исходной смеси с стехиомет-рическим соотношением пар метан = 2 1 при температуре 873 К и давлении 0,1 МПа следующее С(--о = 0,071, С = 0,53, Ср д = 0,24. Та- [c.59]

    Процесс электрокрекинга заключается в быстром пропускании метана через зону высоких температур, создаваемых электрической дугой. Реактором в этом методе служит электроду-говая печь, в которой при пропускании постоянного тока напряжением 7000—8000 В создается дуга с температурой около 2000°С. Электродуговая печь вертикального типа (рис. 11.9) состоит из верхней цилиндрической реакционной камеры диаметром 1 м и высотой 0,4 м и трубы диаметром 0,1 м и длиной 1,0 м. На камере установлен медный катод в виде гильзы, а на верхней части трубы — анод. Катодная гильза и анодная труба снабжены рубашками водяного охлаждения. Метан под давлением подается тангенциально в камеру, за счет чего поток газа приобретает вихревую скорость около 100 м/с и напргшляется от периферии к трубе. При этом он как бы втягивает электрическую дугу в кольцевое пространство анода, где при температуре 1600°С и происходит пиролиз метана. Продукты пиролиза проходят со скоростью 600—1000 м/с через охлаждаемую водой анодную трубу, охлаждаясь при этом до 600 С и поступают в закалочное устройство. В нем за счет впрыскивания воды пирогаз быстро охлаждается до 150°С. Мощность электрической печи по метану составляет 2800 м /ч, что соответствует производительности по ацетилену 15 т/сут. Степень конверсии метана за один проход достигает 0,55 при расходе электроэнергии 10 кВт-ч/кг ацетилена. [c.257]

    В промышленных условиях конверсию метана проводят при двухкратном и более избытке водяного пара по сравнению с расходом метана. На потенциальной диаграмме для паровой конверсии метана, изображенной на рис. 3, нанесены следующие параметры Рен — относительное давление метана в исходном газе 0=1 — относительная поверхность катализатора, заполненная исходным метаном Рен, — равновесное давление метана Рн,о — относительное давление водяного пара в исходном газе Рн о — равновесное давление водяного пара Рнр — избыточное давление газа по сравнению со стехиометрическим н о — относительная поверхность катали- [c.78]

    Опыты проводили на катализаторе ГИАП-5 при соотношении пар атом углерода =4,4 1, и давлении на входе в реактор 3,2 атм . Из полученных показателей, приведенных в табл. 5, видно, что высшие гомологи метана полностью превращаются в метан в первой по ходу газа половине слоя катализатора. За счет этой реакции концентрация метана в верхней части слоя катализатора возрастает, проходит через максимум и начинает снижаться при одновременном резком росте концентрации водорода. Лишь в нижней половине слоя доминирующей является реакция конверсии метана. [c.268]

    Результаты материальных и тепловых расчетов автотермической конверсии метана при получении конвертированного газа, содержащего 0,5 и 2% СН4, в интервале давлений 1—40 ат при начальных отношениях СН HjO =1 1, 1 2и1 3 приведены в табл. П-19. В расчетах принято, что температура смеси метан — водяной пар равна 400 °С, кислорода 50 С, на выходе из конвертора — равновесная. С повышением давления от 1 до 40 ат (избыток водяного пара и содержание метана в конвертированном газе постоянны) расход кислорода на 100. ч получаемых восстановителей увеличивается при отношениях СН4 , 0 = 1 1, 1 2и1 3 соответственно аа 33—34, 41 и 48—55%. [c.92]

    Из справочных данных и формул (2.21) и (2.22) получено для этой реакции АС = -132 + 0,1337 (кДж/моль). Конверсия метана в промышленном реакторе протекает вблизи равновесия. Соответствующее содержание компонентов, ответственных за образование сажи (углерода) для исходной смеси с соотнощением пар метан = 2 1 при температуре 873 К и давлении 0,1 МПа следующее Ссо = 0,071, Сщ =0,53, =0,24. Можно [c.42]

    При 340 °С, давлении 10,6 МПа и соотнощении метан кислород 9 1 конверсия метана составляет 22% выход метанола 17%. формальдегида 0,75%. Образуются также диоксид углерода и вода. [c.178]

    Кислород предварительно подогревают до 315° и затем в смеси с нагретым до 650° природным гаэом под давлением 20—21 ат подают в футерованную камеру сгорания, где проходит реакция и развивается температура примераю 1350°. Продукты реакции направляются затем в котел-утилизатор, где они охлаждаются до 315° с получением примерно 45-атмосферного пара. После этого синтез-газ проходит теплообменник, холодильник и, наконец, промыватель для удаления сажи. При конверсии природного газа, не являющегося чистым метаном, получается газ с соотношением СО Нг примерно 1 1.8 [18]. [c.78]

    Петерс и Мейер [57] подвергали метан разложению до ацетилена, бензола, углерода и водорода над нагретыми вольфрамовыми спиралями в фарфоровых трубках. Реакция прекращалась до наступления равновесия, когда концентрация ацетилена становится достаточно высокой. Несмотря на то, что температурные данные этих авторов являются весьма приближенными, на основания их работ можно сделать некоторые выводы. Максимальная конверсия до ацетилена происходила при наивысшей температуре 3000° С и самом коротком времени контакта — 0,0001 сек. Уменыпение парциального давления метана приводило к увеличению конверсии до ацетилена и уменьшению выходов кокса и жидких продуктов. [c.64]

    В другом процессе, где источником кислорода также является воздух, применяются такие псевдоожиженные термостойкие материалы, как окиси алюминия, магния или кремния. Этуэлл [3] нагревал термостойкий материал до 1093° С, продувая воздух для выжигания остаточного углерода, отложившегося на термостойком материале во время последую-ш,их операций, и добавочный топочный газ. Горючий твердый материал поступает затем в псевдоожиженный слой никелевого катализатора вместе с предварительно нагретым метаном, паром и двуокисью углерода. Это тепло горячего термостойкого материала используется для эндотермической конверсии метана в синтез-газ. Способ отделения никелевого катализатора от термостойкого материала основан на разнице в размерах их частиц (частицы термостойкого материала меньше по величине). Частицы термостойкого материала выдуваются из слоя катализатора, состоящ его из более крупных частиц. При этом возникает другая трудная технологическая задача — транспортировка горячего твердого материала, тем более, что при необходимости работать при 30 ат уменьшение скорости реакции [21] обусловит потребность в более высоких температурах для данной конверсии. Гомогенное частичное окисление метана кислородом представляет интерес для промышленности с точки зрения (I) производства ацетилена и в качестве побочного продукта синтез-газа [5, 10, 7, 12, 2 и (2) производства синтез-газа в качестве целевого продукта при давлении около 30 ат [19, 12, 2]. Для термического процесса (без катализатора) необходима температура около 1240° С или выше, чтобы получить требуемую конверсию метана [19]. Первичная реакция является сильно экзотермической вследствие быстрой конверсии части метана до двуокиси углерода я водяного пара [22]. Затем следует эндотермическая медленная реакция остаточного метана с двуокисью углерода и водяным паром. Для уменьшения расхода кислорода на единицу объема сиптез-газа в-Германии [7] для эндотермической асти реакции применяются активные никелевые катализаторы. В Соединенных Штатах Америки приняты некаталитические реакции как часть гидроколь-процосса [19, 2] для синтеза жидких углеводородов из природного газа. [c.314]

    Пэтри и Монсо [49, 50] весьма тщательно изучили влияпие переменных факторов (температуры, времени контакта и отношения метан кислород) на выход формальдегида при атмосферном давлении. Изучая в поточных системах смесь метана и воздуха в кварцевой трубке при температурах от 500 до 900° С, они нашли, что максимальные выходы формальдегида при окислении метана редко превышали 1%, а наивысшая концентрация формальдегида в выходящем газе составляла 0,2%. Как функция времени контакта, конверсия метана до формальдегида проходит через максимуд в области малого времени контакта и высоких температур. Смеси с отношением метана к воздуху меньшим i давали наивысшие выходы формальдегида, особенно при температуре выше 700° С. Следует отметить, что заполнение реактора в качестве насадки кварцевой струн<кой резко снижало выходы формальдегида. [c.323]

    Окисление метана до формальдегида нод низким давлением в присутствии следов окиси азота в качестве катализатора применялось в Германии (Гутегофнунгсгютте.) В 1940 -г. была построена установка в Румынии в литературе имеется подробное описание ее [18]. Процесс проводился при очень Малой глубине конверсии за проход и температурах реакции от 400 до 600° С в коротких трубках, облицованных керамическими плитками. В качестве сырья применялась смесь, состоящая из 1,0 части метана и 3,7 частей воздуха, к которой добавлялось 0,08% азотной кислоты в качестве катализатора. Отношение метановоздушного " сырья к рисайклу равнялось 1 9. Формальдегид вымывался из выходящего газа, образуя примерно 5%-ные водные растворы. Выход его на расходованный метан составлял 35%. [c.345]

    Никелевый катализатор Легкие нефтяные дистилляты, выкипающие до температуры 250° С. Сырье необходимо очищать от сернис- Ni [1967, 5П160] При конверсии углеводородов под давлением 20 атм, при температуре 500—550° С, весовом отношении пар сырье, равном 1,6, получают газ, обогащенный метаном. Реакция практически не требует Состав газа до очистки от СОг (об.%) 59,0 СН4, 20,5 СОа, 18,9 На, 1,6 СО. Состав газа после очистки СОа (об.%) 73,5 СН4, 23,5 На. [c.140]

    Для паровой конверсии метана СН44-Н20— -СО+ЗНг-состав равновесной смеси определяется не только температурой и давлением, но и соотношением метан водяной пар. При-отсутствии в исходной смеси СО и Нг связь константы равно- [c.319]

    Реакцн сильно эндотермична, и ее равновесие смещается вправо лишь п зи повышении температуры (рис. 27, кривая /). Чтобы увеличить степень конверсии метана, ведут процесс при 800—900 °С в нзбыгке водяного пара. Прн атмосферном давлении этот избыток непелик (2 1), но повышение давления неблагоприятно влияет на состояние равновесия, и в этом случае приходится работать с объеу1НЫм отношением пара к метану 4 1. [c.87]

    Для достижения требуемой концентрации водорода при увеличении давления повышают температуру процесса и увеличивают расход пара (особенио, если стремятся получить 98%-ный Hj). Однако повышение и давления, и температуры приводит к необходимости применения реакционных труб из высоколегированной стали. В связи с этим производство водорода в настоящее время ведут при давленпи не выше 2,5 МПа. Границы ведения процесса, обусловленные качеством стали реакционных труб, даны на рис. 25 (труба из стали НК-40 эксплуатировалась 10 лет, температура стенки трубы па 100 °С была выше температуры процесса паровой конверсии). На современных установках процесс ведут при 2,0—2,6 МПа,830— 880 С и отношении пара к метану, равном (4 -н 5) 1. [c.74]

    В связи с разработкой термически стойких палладиевых мембран предложена, но пока реализована на небольших установках конверсия метана с выводом водорода из зоны реакции через мембрану. Это сдвигает равновесие реакции паровой конверсии метана. Расчеты термодинамического равновесия реакции паровой конверсии метана при давлении 1,925 МПа, отношении пар метан, равном 3 1, и парциальном давлении в остаточном газе 0,16 МПа показали [18], что при выводе водорода уже при 500 °С степень конверсии метана достигает 1, в то время как без вывода Но степень конверсии лштана 0,9 можно достичь только нри 880 °С. [c.78]

    Процесс газификации - не каталитический пламенный, протекает Б пустотелом реакторе цилиндрической формы при 1550-1750 К под давлением от 0,2 до 10 1Ша и выше. Получаемый в реакторе газ содержит 45- 7% СО и 45-47 8 Н2, остальное-С021 азот и метан. Удельный расход сырья составляет 4,6-4,8 т на 1 т 100%-ного водорода расход кислорода-0,75-0,8 нм на I кг сырья пара-0,4-0,6 кг/кг выход газа-около 3 нм /кг. В качестве сырья в процессе могут использоваться углеводороды от газообразных до тяжелых нефтяных остатков. Схема процесса позволяет получить синтез-газ с различным отношением Н2 С0, водород или одновременно синтез-газ и водород. Применительно к установке мощностью 20 тыс.т водорода в год стоимость водорода газификации по сравнению с паровой каталнтической конверсией на 15-20% выше в первую очередь за счет производства технического кислорода. Однако применение установок газификации под повышенным давлением позволяет снизить расход энергии на сжатие получаемого водорода в первую очередь для процесса гидрокрекинга. [c.7]

    Более эффективный привы, позволяющий осуществить сдвиг равновесия в оптимальных условиях ведения процесса, состоит в удалении из зоны реакции одного из образующихся компонентов - водорода или углекислоты. Удаление водорода возможно при размещении в слое катализатора элементов, изготовленных из тонких мембран на основе лалладиевых сплавов, селективно проницаемых для водорода. Термодинамические расчеты показали [7], что проведение конверсии метана с одновременным выделением водорода позволяет прк температуре 1000 К, давлении 2,0 МПа и соотношении пар метан 2 1 достигнуть глубины превращения метана 0,94 и получить водород высокой степени чистоты. Конструкция аппарата, обеспечивающего достаточную интенсивность подвода тепла и удаления водорода через палладиевые мембраны, сложна, поэтому процесс не реализован в промышленных масштабах. [c.57]

    Каталитическая реакция метана с водяным паром изучена многими исследователями, особенно русскими Бодровым, Аппельбаумом и Темкиным [57]. Эйкерс и Кэмп [581, используя никелевый катализатор на кизельгуре, изучили в интегральном реакторе при температуре 638 С и давлении 1 ат влияние концентрации на скорость этой реакции. Они нашли, что реакция имеет первый порядок по метану, что как СО, так и Oj являются первичными продуктами, а реакция конверсии СО либо совсем отсутствует, либо протекает очень медленно. Они предположили, что хемосорбция СН4 или расщепление СН4 на радикалы Hj и является стадией, лимитирующей скорость процесса, и определили, что энергия активации этой стадии равна 9 ккал1моль. [c.110]

    Схема не является энерготехнологической. В котлах-утилизаторах получают пар среднего давления (40 ат), илущий в основном на конверсию в трубчатую печь. Сжатый до 3,8 ,О МПа природный газ смешивается с азотоводородной смесью и поступает в конвективную зону печи, где нагревается до 380°С и затем направляется на очистку от сернистых соединений. Система очистки аналогична описанной выше. Очищепннй газ сменшвается с водяным паром ( -г г 3,7 1) и направля-е сл в конвективные змеевики нагрева парогазовой смеси (см.рис.75), При температуре 520-540°С газ поступает в реакционные трубы //, где конвертируется 90-92% метана. Остаточный метан конвертируется в конверторе Д куда компрессором подается воздух, подогретый до 500°С в конвективном змеевике в печи. Из нижней части реактора конвертированный газ при температуре 960-1000°С и давлении 26-28 ат поступает в котел-утилизатор /4 и охлаждается в нем до 510-520°С. [c.250]

    Взаимодействие толуола с водяным паром приводит к образованию газообразных продуктов, содержащих кроме водорода и окислов углерода еще и метан. При повышении температуры реакции выход водорода снижается и увеличивается образование метана. Специальными опытами показано, что одновременно протекает гидродеалкилирование толуола водородом, образующимся при конверсии с водяным паром. Эту р ёакцию можно интенсифицировать подъемом в реакционной зоне температуры и повышением давления. Зависимость глубины превращения метилбензолов от объемной скорости подачи сырья на ЛЧ-Сг катализаторе показана на рис. 6.11 [3, с. 168—176]. Процесс проводили при 375 °С и мольном отношении вода углеводород = 6 1. С увеличением числа метильных групп в молекуле углеводорода скорость деалкилирования в одном ряду углеводородов возрастает толуол < ж-ксилол (и-ксилол) < мезитилен и в другом ряду убывает толуол > о-ксилол гемимеллитол. Скорость деалкилирования псевдокумола больше, чем о-ксилола, и меньше, чем м- и и-ксилола. Таким образом, скорость деметилирования возрастает в том случае, если каждая последующая метильная группа станет по отношению к предыдущим в мета- или параположение [61—66]. [c.258]

    Любые газообразные углеводороды (в частности, метан), содержащиеся в водороде, который в дальнейшем используется для получения аммиака, не изменяются при пропускании через катализатор синтеза аммиака. Поскольку непрореагировавшие газы возвращаются в цикл, газообразные углеводороды накапливаются и снижают парциальное давление водорода. При получении синтез-газа для производства аммиака концентрацию углеводородов снижают до 0,2- 0,5%, На стадии конверсии природного газа водяным паром образующийся в первичном реакторе газ может содержать 5-10% метана. Этот газ смешивают с определенным количеством воздуха (синтез-газ должен содержать азот) и пропускают смесь над катализатором вторичной высокотемпературной конверсии. Этот катализатор находится в адиабатическом реакторе, футированном тугоплавкими материалами. Поскольку реакция конверсии экзотермическая, температура в реакторе поднимается до [c.166]

    S ранних работах [2, 3] алкилирование ацетилидов щелочных -металлов проводилось в жидком аммиаке при действии органических галогенидов или сульфатов в качестве алкилирующих агентов. Среди галогенидов бромиды дают наилучшие результаты, однако эта реакция имеет ограничения ввести можно только первичные алкильные группы, не имеющие разветвления у второго атома углерода. Кроме того, при применении алкилгалогенидов этот метод не дает удовлетворительных результатов при синтезе метил- или этил-ацетиленов, а в случае высших алкилгалогенидов необходимо работать под давлением. Если исходить из бромидов от w-пропил-до н-гексилбромида, то выходы колеблются от 40 до 80%. При использовании диметил- или диэтилсульфата в качестве алкилн-рующего агента происходит замещение лишь одной алкильной группы и конверсия достигает от 50 до 100%. Другие сложные эфиры, такие, как метан- и я-толуолсульфонаты, а также, ацетилиды лития и калия тоже использовались, но в ограниченной степени. [c.188]

    Требования к чистоте водорода. В промышленном масштабе конверсией углеводородного сырья получают водород чистотой более 99,9% [3]. Это требует применения высоких температур, низкого давления, большого избытка водяного пара, отсутствия инертных газов в сырьевом углеводороде и водяном паре и последующей очистки водорода для почти полного удаления примесей. Однако для многих областей применения такая высокая чистота водорода не требуется. Для большинства процессов нефтепереработки чистота водорода может быть 95% и ниже при условии, что в качестве примесей содержатся метан и азот. В таких случаях наиболее экономи- чные условия процесса достигаются соответствующим изменением температуры и давления и рациональным выбором схемы очистки. [c.172]

    Затраты энергии пропорциональны объему газа (числу молей п). При полном превращении метана и СО образуется 4 моля водорода, к которому для получения аммиака добавляется стехиометрическое количество азота — 4/3 моля. Если конверсию метана провести при термодинамически выгодных условиях - при атмосферном давлении, то в дальнейшем нужно будет сжать более пяти объемов азотоводородной смеси. Энергетические затраты будут меньше, если конверсию провести при промежуточном давлении, сжимая один объем газа - только метан (водяной пар поступает под давлением). Тогда энергия сжатия существенно уменьшится. Детальные техноэкономические расчеты показали, что на стадии конверсии оптимальным будет давление 4 МПа. Таким образом, оптимальные условия конверсии метана (давление) в технологической схеме отличаются от оптимальных условий одиночного реактора (см. разд. 5.5.2). [c.401]

    Нами [2, 101 изучена кинетика конверсии СН4 парами воды под давлением до 40 атм на установке проточного типа при температуре 600—800° С и соотношении пар метан, равном 0,5—4, на катализаторе ГИАП-3, содержащем в качестве носителя 94% А1гОз, 5% никеля и 1 % А12О3 как активированного слоя, образовавшегося в результате прокаливания и восстановления солей никеля и алюминия, [c.52]


Смотреть страницы где упоминается термин Давление конверсии метана: [c.79]    [c.431]    [c.189]    [c.190]    [c.211]    [c.325]   
Справочник азотчика Том 1 (1967) -- [ c.73 , c.93 , c.115 , c.125 , c.138 ]

Справочник азотчика Т 1 (1967) -- [ c.73 , c.93 , c.115 , c.125 , c.138 ]




ПОИСК





Смотрите так же термины и статьи:

Конверсия метана



© 2025 chem21.info Реклама на сайте