Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод с углеводородами

    Соединения. Водородные соединения углерода — углеводороды являются объектом изучения в органической химии. Поэтому кратко отметим лишь некоторые свойства простейшего из них — метана СН4.- [c.357]

    Большая доли выбросов приходится на автомобильный транспорт. В выхлопных газах двигателей содержатся оксид углерода, углеводороды, оксиды азота, оксиды серы, канцерогенные вещества (например, бензпирен), а также свинец, поскольку до сих пор применяется этилированный бензин. [c.7]


    Состав продуктов сгорания. При полном сгорании топлива образуются углекислый газ, сернистый газ, пары воды, избыточный кислород и азот. В случае неполного сгорания топлива в продуктах сгорания могут быть оксид углерода, углеводороды, углерод и др. Массу и объем продуктов сгорания, а также расход воздуха для горения топлива определяют по формулам, приведенным в гл. IV. [c.197]

    Продукты полного горения топлива состоят из углекислого газа, сернистого газа, паров воды, избыточного кислорода и азота. При неполном горении в продуктах горения могут также присутствовать окись углерода, углеводороды, водород и элементарный углерод — сажа. [c.110]

    Другие виды газообразного топлива (окись углерода, углеводороды) практически могут быть использованы в топливных элементах только при повышенных температурах (выше 400—500° С). В таких высокотемпературных элементах в качестве электролита используют либо расплавы углеродистых солей щелочных металлов, либо твердые электролиты с анионной (кислородной) проводимостью. [c.603]

    Промышленное производство и энергетика, автомобильный транспорт и авиация, химизация сельского хозяйства и многие другие сферы деятельности человека приводят к изменению внешней среды и являются источниками загрязнения атмосферы, почвы, водоемов и морей. К основным веществам, загрязняющим воздушный бассейн, относятся оксид углерода, углеводороды, оксиды серы и азота и твердые частицы (первичные загрязнители). Другие вещества по своему происхождению являются вторичными. Например, так называемые кислотные дожди , образующиеся в результате взаимодействия оксидов серы и азота с влагой воздуха. [c.239]

    Бензин модифицированного состава образует меньшее количество оксида углерода, углеводородов и не увеличивает количество оксидов азота. Кроме того, к такому бензину предъявляют ряд других требований, улучшающих его экологические свойства. [c.343]

    Углеводородное сырье конвертируют с двуокисью углерода и водяным паром в присутствии никелевого катализатора при температуре более 750 С, давлении до 2 атм и соотношении двуокись углерода углеводороды, равном более 3 и без водяного пара. При другом режиме процесс протекает при давлении 8—18,5 атм, соотношении водяной пар углеводороды, равном более 2,0, и соотношении двуокись углерода водяной пар углеводороды, равном более 4,0 [c.177]


    Токсикологические испытания показали, что МТБЭ не оказывает отрицательного действия на организм человека. Добавление МТБЭ в бензины снижает содержание оксида углерода, углеводородов и полициклических ароматических соединений в отработавших газах. Некоторым недостатком МТБЭ является более низкая, чем у углеводородов теплота сгорания (35 200 кДж/кг) и способность растворяться в воде, хотя и в небольшой концентрации (до 4,8 г в 100 г воды при 20 °С). [c.171]

    Так как эффективность процесса определяется прежде всего состоянием катализатора, то можно легко представить ситуацию при которой это состояние в нестационарном режиме обеспечивает большую активность и, что особенно важно, селективность катализатора. Очевидно, в искусственно создаваемом нестационарном режиме можно добиться состава катализатора, в принципе невозможного при неизменных условиях в газовой фазе. Это хорошо видно на примере раздельного механизма окислительновосстановительных реакпий, когда при повышенных температурах протекают полное окисление водорода, окиси углерода, углеводородов и многих других органических веш,еств, а также парциальное окисление олефинов, спиртов, ароматических соединений. Осуществляя раздельно взаимодействие кислорода с восстановленным катализатором, выведенным каким-либо образом из-зоны реакции, и затем взаимодействие реагирующего компонента с вводимым в зону реакции окисленным катализатором, можно значительно увеличить активность и избирательность процесса за счет того, что в таком нестационарном режиме катализатор может поддерживаться в состоянии, оптимальном по энергии связи кислорода с поверхностью. [c.17]

    Диоксид углерода, углеводороды, кислородсодержащие соединения, вода, канцерогенные вещества Пыль [c.562]

    Диоксид серы(1 ) оксид углерода, углеводороды Углеводороды [c.562]

    Стабильность комплекса, комплекс карбамида с н-алканами могут давать углеводороды, у которых в цепи более 4-5 атомов углерода. Углеводороды с [c.59]

    Нейтральные газы, двуокись углерода, углеводороды [c.592]

    Осушка и одновременная очистка газов с температурой кипения ниже —180° С от примесей кислорода, азота, двуокиси и окиси углерода, углеводородов Силикагель марки КСМ, охлаждаемый жидким азотом, диаметр зерен 1—5 мм- предварительно газ подвергают осушке силикагелем при комнатной температуре Активированный уголь марки АГ-2, диаметр зерен 2—4 мм комнатная температура 60-80 Не более 02 — 0,0005 СО, СОг —0,001 влаги — 0,05 жг/л Вакуумирование при 200—230= С [c.616]

    Альдегиды, антрацены, пары масла, углеводороды Водород, оксид углерода, метан, углерод Оксид углерода, углеводороды [c.190]

    Годовой экономический ущерб, причиняемый воздействием загрязняющих примесей на окружающую среду, оценивается укрупненно в зависимости от массы и видов выбрасываемых веществ и от других факторов в соответствии с рекомендациями действующей методики [184]. Содержание вредных веществ, выбрасываемых автомобильным транспортом (оксид углерода, углеводороды, оксиды азота), определяется в зависимости от пробега автомобилей, удельного выброса, технического состояния автомобилей и других факторов [185]. [c.200]

    Это типичный случай большинства простых реакций, протекающих в растворах. Если же реакция происходит только на поверхности между двумя фазами, то говорят, что такая реакция гетерогенна. Имеется очень много примеров реакций этого типа среди них можно отметить контактный процесс окисления ЗОг кислородом на поверхности платино-асбестового катализатора и гидрогенизацию ненасыщенных соединений в жидких суспен-гшях никелевого катализатора Ренея (N 02). Кроме этих двух категорий реакций, имеется группа реакций, так называемых цепных процессов, скорость которых может зависеть не только от химического состава, но также от размера и геометрии поверхности, ограничивающей реагирующую систему. Хотя такие реакции классифицировались как гетерогенные, это определение не точное, поскольку реакция не ограничивается поверхностными слоями скорее всего поверхность лишь способствует процессам, происходящим в объеме газовой фазы или изменяет их. Типичными примерами таких реакций являются цепное окисление водорода, окиси углерода, углеводородов и фосфора. Большинство изученных газофазных реакций относится к этой категории. [c.17]

    Доказано, что при образовании на металле сплошного монослоя водорода или кислорода на 1 атом водорода или кислорода приходится 1 атом поверхности металла. При хемосорбции азота, окиси углерода, углеводородов образуются более сложные сорбционные соединения. Окись углерода может образовать монослой путем такого взаимодействия атомов - [c.198]

    Для сульфохлорирования небольших количеств жидких углеводородов в лабораторных условиях может быть использована изображенная на рис. 65 аппаратура для сульфохлорирования газообразных угл вВ Одородов в р зств оре четыреххлористого углерода (см. стр. 392). Кварцевая трубна наполняется вместо четыреххлористого углерода-углеводородом,, предназначенным для сульфоклориров ания, а трубка для подачи газообразного углеводорода закрывается. У верхнего конца [c.398]


    Из углеводородов различных структур наиболее устойчивые комплексы дают углеводороды, имеющие прямую цепь. Разветвление углеводорода и включение в него колец препятствуют образованию комплекса. Для углеводородов различных структур имеется минимальная длина алкильной цепи, при которой может образоваться комплекс. Так, к-алканы способны давать комплексы при длине цепи, состоящей не менее чем из шести атомов углерода алканы с одной метильной боковой группой способны образовать комплексы при наличии в боковой цепи не менее 10—13 атомов углерода, углеводороды с боковой этильной группой должны иметь в прямой цепи не менее 24 атомов углерода, а углеводороды с более длинными боковыми цепями или с несколькими цепями или кольцами не образуют комплексы вообще [33 ] несмотря даже на высокую температуру кристаллизации некоторых из этих углеводородов. Способны к образованию комплекса и некоторые циклические углеводороды, имеющие длинную алкильную цепь, например 1-фенилоктадекан, 1-фенилэйкозан и др. Но циклические углеводороды с недостаточно длинной цепью или имеющие, кроме кольца, ответвления цепи не дают комплексов с карбамидом [34]. Отдельные углеводороды, неспособные сами по себе образовывать комплекс, например 3-метилгептан, в присутствии комплексообразующих углеводородов могут также дать комплекс [29]. [c.141]

    Применение МТБЭ дает ряд преимуществ экологического характера, так как добавление его к бензину снижает содержание загрязнителей (оксида углерода, углеводородов и полшдаклических ароматических углеводородов) в выхлопных газах. Токсикологические исследования показали, что МТБЭ не оказывает отравляющего влияния на организм человека. [c.178]

    При каталитическом окислении различных веществ (R) на окислах металлов последние обычно испытывают воздействие реакцио1пюй среды. Наиболее типичным и общим проявлением такого воздействия является фазовое восстановление окислов окисляемыми молекулами R — водородом, окисью углерода, углеводородами и т. д. Глубина воеспгановле-ния данного окисла зависит от химической природы R, температуры и других условий проведения реакции 1.5]. [c.7]

    Приводятся данные, что поверхностное восстановление Ре 04 может происходить несколько глубже [3.26]. В результате образуются более восстановленные места, на которых возможно появление атомарного железа в виде кратковременно живущих дефектов. Эти места и выступают как активные центры, на которых реализуется карбидный цикл. Возможно, что атомы железа возникают и одновременно реагируют с углеродом углеводорода в момент восстановления при образовании промежуточного активного комплекса окисла железа с молекулой углеводорода. При этом водород реагирует с кислородом окисла. Здесь катализатор существует в виде фазы Ре Оз, через которую диффузии углерода не происходит. Поэтому в данном случае образуются по-ликристаллические высокодисперсные графитоподобные отложения. Присутствие калия в железоокисном катализаторе дегидрирования низших углеводородов стабилизирует окислы железа и также обеспечивает саморегеиерацию катализатора [3.27, 3.28]. Содержание калия должно быть эквивалентно образованию монослоя его па поверхности катализатора. [c.67]

    ГАЗ КОКСОВЫЙ — горючий газ, образуется в процессе коксования каменного угля (нагревании без доступа воздуха до 900—1100° С). Г. к. содержит водород, метан, оксид углерода, углеводороды и другие горючие комю-ненты. Г. к. используется для отопления коксовых и мартеновских печей, ка керамических и Других заводах, в качестве химического сырья для получения водорода и синтеза органических веществ. [c.62]

    Г азы, выходящие из окислительного аппарата, состоят из азота, (Кислорода, оксидов углерода, углеводородов и их кислородных производных, а также водяных паров, образующихся при окислении углеводородного сырья и в результате подачи воды (или водяного пара) в газовое пространство окислительного аппарата. До сравнительно недавнего времени эти газы выводили в атмосферу, т. е. они являлись одним из основных источников загрязнения воздушного бассейна, связанных с работой нефтеперерабатывающих заводов. Дополнительным и часто значительиым источнико М загрязнения воздушного бассейна могут быть пары, выделяющиеся при наливе горячего битума в железнодорожные бункеры и автобитумовозы или розливе его в бумажные мешки и бочки. [c.167]

    Вторую серию составляли углеводороды с молекулярным весом 300—450. В нее входили углеводороды нафтенового, ароматического и парафинового рядов с 22 и 32 атомами углерода. Углеводороды этой серии, по молекулярному весу отвечающие углеводородам трансформаторных и турбинных масел, были синтезированы и в лаборатории С. Пилят (Львовскпй политехнический институт) и описаны в работах Н. Туркевича [45], Кло-са Нейман-Пилят и С. Пилят [46], Нейман-Пилят и С. Пилят [47]. Окисление углеводородов обеих серий проводилось кислородом в запаянных стеклянных трубках при 120°. По количеству ноглощенного кислорода можно было судить о склон- [c.359]

    Метановые углеводороды подвергаются - изомеризации в присутствии кислотных катализаторов. Легче изо-меризуются изопарафины, содержащие третичный углеродный атом, труднее изоиара-фины с четвертичным атомом углерода. Углеводороды с пря.мой цепью занимают промежуточное полол енне. Например, для гекса-нов скорость изомеризации падает в ряду  [c.48]

    За первой группой было сохранено название парафины . Состав ее отвечает почти всегда общей формуле гомологического ряда метана СпНгп+2- Основную часть нефтяного парафина составляют углеводороды нормального строения, содержащие в молекуле 20—35 атомов углерода. Углеводороды эти кристаллизуются в виде крупных пластинок или лент. При центрифугировании, прессовании или выпотева-нии кристаллическая масса сравнительно легко отделяется от заполняющих межкристаллическое пространство жидких углеводородов (масел). [c.79]

    Бензин состоит из углеводородов, содержащих в молекуле от 4 до 12 атомов углерода. Углеводороды керосина содержат от 9 до 16 атомов углерода. Присутствующие в газойле углеводороды, вероятно, имеют 15—25 атомов углерода в молекуле. Анализ по методу Уотермена показал, что газойли, кипящие в пределах 260—382°, состоят из 43—74% парафинов, 19—35% нафтенов и 7—22% ароматических углеводородов. Молекулярный вес смазочных масел находится в пределах 300—1000, что соответствует присутствию в них углеводородов с 20—70 атомами углерода. Фракции смазочных масел содержат твердый парафин и ароматические углеводороды, которые обычно удаляют в процессе очистки. В углеводородах смазочных [c.28]

    Метилтретбутиловый эфир — бесцветная жидкость с резким запахом, температура кипения 55°С. Введение МТБЭ снижает неравномерность распределения детонационной стойкости бензина по фракциям. МТБЭ обладает высокой детонационной стойкостью, октановые числа смешения его изменяются от 115 до 135 по исследовательскому методу или от 98 до ПО — по моторному (табл. 6.14). Токсикологические испытания показали, что МТБЭ не оказывает отрицательного действия на организм человека. Добавление МТБЭ в бензины снижает содержание оксида углерода, углеводородов и полициклических ароматических соединений в отработавших газах (см. ниже). Некоторым недостатком МТБЭ является более низкая, чем у углеводородов, теплота сгорания (35 200 кДж/кг) и способность растворяться в воде, хотя и в небольшой концентрации (до 4,8 г в 100 г воды при 20°С). При испытаниях отмечено, что применение МТБЭ ведет лишь к незначительному увеличению расхода бензина. [c.228]

    В качестве электрохимического горючего в топливных элементах могут быть использованы водород, гидразин, метанол, муравьиная кислота, окись углерода, углеводороды, а в качестве окислителя— чистый кислород или кислород воздуха. Практическое применение нашли пока первые три вида горючего, а наибольшие успехи достигнуты в разработке водородно-кислородного топливного элемента, и котором происходит реакция 2Н2+0.2 2Н20. [c.222]

    Как и в случае всех топлив, загрязнения в выхлопе также могут образовываться в результате неполного сгорания, ведущего к возникновению оксида углерода, углеводородов, карбонизиро-ванных частиц и возможно других соединений типа ПХДД. Содержание этих примесей можно свести к минимуму путем достижения высокой эффективности сгорания посредством специальных мер. [c.67]

    Этот термин часто применяют вместо термина электрохимический генератор . В качестве окислителя в топливных элементах почти всегда используют или чистый кислород, или кислород воздуха. В качестве топлива применяются водород, гидразин, метанол, муравьиная кислота, оксид углерода, углеводороды, уголь и др. Практическое применение нашли пока первые три вида электрохимического горючего, а наибольшие успехи достигнуты в разработке водородно-кислородного топливного элемента, в котором происходит реакция 2Н2+О2—>-2Н20. [c.263]

    Акгивированные угли используют в газо-адсорбционной хроматографии для анализа низкокипящих неорганических газов и легких углеводородов, для разделения водорода, аргона, ксенона, метана, двуокиси углерода, углеводородов до 4 в порядке увеличения числа углеродных атомов. В табл. 3 приведена техническая характеристика активированных углей, применяемых в газовой хроматографии. Наиболее широкое применение в ГАХ нашли угли сарановые, АГ и СКТ. [c.85]

    Активированные угли используют в газо-адсорбционной хроматографии для анализа низкокипящих неорганических газов и легких углеводородов, для разделения водорода, аргона, ксенона, метана, диоксида углерода, углеводородов до С4 в порядке увеличения числа углеродных атомов. Наиболее широкое применение в ГАХ нашли угли сарановые, АГ и СКТ. Перед употреблением активированные угли прокаливают при высокой температуре в токе инертного газа непосредственно в хроматографической колонке. Газ-но-ситель должен быть тщательно очищен от кислорода (кислород окисляет поверхность активированных углей). [c.166]

    Эти открытия сыграли огромную роль в развитии науки вообще, а химии в особенности. Ученые-химики постепенно стали отходить от виталистических позиций и склоняться к тому, что и органические вещества человек может получать из химических элементов. Принцип противопоставления веществ органических и неорганических обнаружил свою несостоятельность. Органическая химия изучает соединения углерода — углеводороды и их производные, в состав молекул которых могут входить почти все элементы периодической системы. Выделение органической химии в самостоятельную науку вбусловлено большим числом и многообразием и особыми свойствами соединений углерода. [c.287]

    На это указывает молекулярно-статистическая обработка адсорбционных данных и получение соответствующих атом-атомных потенциальных функций межмолекулярного взаимодействия атомов углерода углеводородов с атомами углерода графита. Однако для линейных и плоских молекул этот эффект меньше влияния соответствующего уменьш1ения числа атомов водорода в молекуле. Ниже приведены константы Генри К (при =—86,2°С) и начальные (при адсорбции Г- 0) дифференциальные теплоты адсорбции 1 на ГТС этана, этилена и ацетилена  [c.17]

    Метан - простейший представитель водородных соединений углерода -углеводородов, представляющих собой самый многочисленный класс химических вешеств и являющихся объектом изучени.я органической химии. [c.74]


Смотреть страницы где упоминается термин Углерод с углеводородами: [c.275]    [c.513]    [c.29]    [c.180]    [c.6]    [c.126]    [c.86]    [c.237]    [c.220]    [c.397]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.453 ]




ПОИСК







© 2025 chem21.info Реклама на сайте