Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аниониты жидкие

    Большинство азотных удобрений получают синтетически нейтрализацией кислот щелочами. Исходными материалами для получения азотных удобрений служат серная и азотная кислоты, диоксид углерода, жидкий или газообразный аммиак, гидроксид кальция и т. п. Азот находится в удобрениях или в форме катиона NH , т. е. в аммиачной форме, в виде NH2 (амидные), или аниона N0 , т. е. в нитратной форме удобрение одновременно может содержать и аммиачный и нитратный азот. Все азотные удобрения водорастворимы и хорошо усваиваются растениями, но легко выносятся в глубь почвы при обильных дождях или орошении. Распространенным азотным удобрением является нитрат аммония или аммиачная селитра, применяемая также в составе взрывчатых вешеств. [c.153]


    Все азотные удобрения водорастворимы, азот из них хорошо усваивается растениями, особенно из аниона N03 , который отличается высокой подвижностью в почве. По агрегатному состоянию азотные удобрения делятся на твердые (соли и карбамид) и жидкие (аммиак, аммиачная вода и аммиакаты, представляющие собой растворы твердых удобрения). В табл. 18.1 приведены характеристики важнейших азотных удобрений и удельный вес их в общем балансе производства. [c.260]

    Продукты химической коррозии металлов — окисные и солевые пленки — имеют ионную структуру. В отличие от жидких электролитов с ионной проводимостью (л + а = 1) ионные кристаллы обладают различными типами проводимости ионной (п + 3 = 1), электронной ( э = 1) и смешанной (п + а + + э = 1) проводимостью (табл. 5) здесь п и п — числа переноса катионов, анионов и электронов соответственно. Если в общем случае Пц п + п = I, то число переноса электронов Пз может быть определено по формуле [c.34]

    Жидкостные электроды. В жидкостных ионселективных электродах возникновение потенциала на границе раздела фаз обусловлено ионным обменом, связанным с различием констант распределения иона между жидкой и органической фазами. Ионная селективность достигается за счет различия в константах распределения, устойчивости комплексов и различной подвижности определяемого и мешающего ионов в фазе мембраны. В качестве электродноактивного соединения в жидкостных ионселективных электродах могут быть использованы хелаты металлов, ионные ассоциаты органических и металлосодержащих катионов ц анионов, комплексы с нейтральными переносчиками. Большое распространение получили пленочные пластифицированные электроды, выпускаемые промышленностью и имеющие соответствующую маркировку, например, ЭМ—СЮ4 01, ЭМ—НОз —01. Чувствительный элемент таких электродов состоит из электродноактивного компонента, поливинилхлорида и растворителя (пластификатора). В лабораторной практике используют аннонселективные электроды, для которых электродноактивным соел,инением являются соли четвертичных аммониевых оснований. [c.121]

    Рассол, поступающий на электролиз, представляет многокомпонентную систему, в которой содержатся ионы натрия, хлора, гидроксоний-катион и гидроксид-анион. Последовательность их разряда и образующиеся продукты определяются в соответствии с правилом разряда (21.2.1) величиной их потенциалов разряда, которые зависят от условий электролиза и, весьма существенно, от материала катода. Различают два варианта технологического процесса электролиза водного раствора хлорида натрия электролиз с твердым железным катодом (диафраг-менный метод) и электролиз с жидким ртутным катодом. [c.338]


    Растворение тех же веществ в жидком аммиаке сопровождается образованием сольватированных ионов аммония и соответствующих анионов  [c.132]

    Анионный обмен между твердой и жидкой фазами [c.41]

    Соединения. Щелочные металлы реагируют с сухим водородом при нагревании, образуя гидриды ЭН. Это твердые кристаллические вещества, имеющие ионную решетку, причем анионом является Н . Об отрицательном заряде водорода в гидридах свидетельствует тот факт, что при электролизе LIH (в расплавленном состоянии илк в растворе в жидком NH3) водород выделяется на аноде. Термическая стойкость гидридов уменьшается от LiH к sH. [c.301]

    Равновесие обмена анионов между ониевыми хлоридами, растворенными в 1,2-дихлорэтане, и твердым п-нитрофенолятом натрия устанавливалось за 10—30 мин, т. е. медленнее, чем при обмене между жидкими фазами. По скорости обмена (X ОФ замещается нитрофенолятом) катионы и анионы растворенными в 1,2-дихлорэтане, и твердым и-нитрофенолятом полагаются в следующий ряд [20]  [c.43]

    Известно, что расплавленные шлаки представляют собой микро-неоднородный раствор, состоящий из простых катионов и анионов и комплексных кислородсодержащих анионов, устойчивость которых зависит от многих факторов, в том числе и от природы простых катионов. Ионная структура жидких шлаков предопределяет их преимущественно электролитическую проводимость, т. е. перенос тока в шлаках при наложении электрического поля, и обусловливается в основном упорядоченным движением ионов. [c.83]

    На подвижность катионов существенное влияние оказывают анионное окружение и температура расплава. Электропроводность жидких шлаков с повышением температуры увеличивается. Шлаки относятся к проводникам второго рода, в которых переносчиками тока являются ионы. Шлаки имеют положительный температурный коэффициент проводимости и подчиняются законам Фарадея. [c.83]

    К анионной полимеризации относят процессы полимеризации винильных соединений под действием амидных ионов или растворов натрия в жидком аммиаке и др. [c.564]

    Недавно [8] исследован процесс ожижения угля в восстановительной среде, протекающий через ряд превращений, включающих свободнорадикальные реакции и реакции элиминирования. При восстановительном алкилировании электроны присоединяются к ароматическим ядрам и образуются соответствующие анионы, вслед за чем протекает С-алкилирование. Расщепление эфирных связей приводит к образованию фенолят-анионов, которые при последующем 0-алкилировании дают жидкие продукты. [c.325]

    Система амид натрия - жидкий аммиак удобна для генерирования анионных реагентов с целью их вовлечения в реакции Зк-типа, протекающих в этом случае в особо мягких условиях, обусловленных высокой активностью образующихся анионов, благодаря практически апротонному характеру аммиака как среды [18], с использовани- [c.40]

    Гомогенно-каталитические реакции особенно распространены при проведении процессов в жидкой фазе. К таким процессам относятся ускоряющиеся под действием водородных ионов реакции этерификации и гидролиза сложных эфиров, инверсии сахаров, мутаротации глюкозы, а также катализируемый некоторыми анионами и катионами распад перекиси водорода в водных растворах. Кроме того, гомогенно-каталитическими являются реакции полимеризации олефинов в жидкой фазе под действием серной кислоты, полимеризация олефинов в жидкой и паровой фазах в присутствии трехфторнстого бора или фтористого водорода и многие другие. [c.276]

    Водородная связь представляет собой как бы вторую побочную валентность водородного атома, которую он может проявлять по отношению к сильно отрицательным атомам, если основная валентность связывает его с атомом, тоже сильно отрицательным. В жидком состоянии фтористый водород имеет молекулу H Fg. При растворении его в воде образуются ионы Н+ и НРГ. В анионе HFF водород связывает оба атома фтора не двумя ковалентными связями, так как он не может иметь больше одной такой связи, а электростатическим взаимодействием протона Н+ с ионами Р . Сильно электроотрицательный атом F отнимает электрон от атома Н и последний превращается в протон Н+, способный своим зарядом довольно прочно связать второй ион F . Это ведет к образованию водородной связи типа X . ., H+X , которую называют водородным мостиком. [c.79]

Рис. 85. Спектр ЭПР анион-радикала бутадиена в жидком аммиаке Рис. 85. Спектр ЭПР <a href="/info/31048">анион-радикала</a> бутадиена в жидком аммиаке
    Крупные и малоподвижные анионы S Q2 остаются на поверхнос> ти ядра, а ионы водорода переходят в жидкую фазу, [c.24]


    Фторсульфннат калия. Белый, разлагается при нагревании. Растворяется в ледяной воде (гидролиз по аниону), жидком 80г. Кристаллогидратов не образует. Разлагается водой, разбавленными кислотами легко окисляется. Получение см. 55 . [c.222]

    В.И. Лялько [69], скорость метасоматического замещения анионов пород анионами жидкой фазы зависит от pH и химического состава данного раствора, его температуры, скорости потока, величины поверхности, контактирующей с раствором. К перечисленным факторам следует еще добавить и пластовое давление. Влияние температуры на константу равновесия метасоматических реакций можно проследить по данньп табл. 25. Они показывают, что с ростом температуры интенсивность экзотермических реакций снижается, а эндотермических — увеличивается. Экспериментальные исследования зависимости интенсивности техногенного метасоматоза от величины пластового давления пока отсутствуют. Однако предварительная оценка возможна на основе известного уравнения зависимости [c.133]

    Для отделения самородного золота от пустой породы применяют промывку водой, растворение Ли в жидкой ртути с последующей разгонкой амальгамы. Лучшим методом отделения золота от пустой породы является цианидный метод. Этот метод основан на растворении Ли в растворе Na N за счет окисления кислородом воздуха и перехода в анионный комплекс Na[Au( N)2l с последующим вытеснением из цианоаурата (I) цинком  [c.623]

    В работе [65] было проведено сравнение каталитических характеристик типичной для МФК четвертичной аммониевой соли, аликвата 336, 18-крауна-6 и тетраметилэтилендиаминов в системе твердая фаза/жидкая фаза. Аммониевый катализатор показал одинаковые результаты или даже превосходил другие в реакциях замещения ацетатных, фторидных и аденильных анионов, однако в случае цианидного аниона реакция с краун-эфиром протекала по крайней мере в 100 раз быстрее, чем с аликватом 336 (разд. 1.5). [c.71]

    Вещества, прохождение через которые электрического тока вызывает передвижение вещества в виде ионов ионная проводимость) и химические превращения в местах входа и выхода тока (электрохимические реакции), называются проводниками второго рода. Типичными проводниками второго рода являются растворы солей, кислот и оснований в воде и некоторых других растворителях, расплавленные соли и некоторые твердые соли. Как правило, в проводниках второго рода электричество переносится положительными (катионы) и отрицательными (анионы) ионами, однако некоторые твердые соли характеризуются униполярной проводимостью, т. е. переносчиками тока в них являются ионы только одного знака — катионы (например, в Ag l) или анионы (ВаСЬ, ZrOa + aO, растворы щелочных металлов в жидком аммиаке). [c.384]

    По структуре стекла представляют собой переохлажденные системы. Катионы и анионы вещества стекла расположены друг относительно друга как в жидкости, т. е. с соблюдением лишь ближнего порядка (см. 53). В то же время тип движения ионов в стеклах — в основном колебания — характерен для твердого состояния. Такое строение находит отражение в том., что в отличне от веществ, находящихся в кристаллическом состоянии, стекла не имеют четких температур плавления и затвердевания. При нагревании стекло размя1чается, иостеиенио переходя в жидкое состоящее. При охлаждении расплавленного стосла затвердевание тои<е происходит постепенно. [c.514]

    Наряду с гидроксидами щелочных металлов в МФК используют также и другие основания твердые фториды щелочных металлов, бикарбонаты и карбонаты, гидриды и амиды. Вопросы о механизме участия в МФК первых двух анионов не представляют особого труда, так как эти анионы могут экстрагироваться в органические растворители при обычном проведении МФК в системе жидкая фаза/твердая фаза (о солюбилизации НСОз см. в [75]). Однако что касается остальных анионов, то в противоречии с предположениями, высказанными во многих статьях, оказалось, что они экстрагируются в неполярные среды достаточно трудно как с помощью ониевых солей, так и с помощью краун-эфиров. [c.66]

    Часто в качестве органической фазы применяется сам исходный жидкий субстрат. В принципе для этой цели можно использовать многие органические растворители. Однако они не должны даже частично смешиваться с водой, чтобы избежать сильной гидратации ионных пар. Следует иметь в виду, что в малополярных растворителях таких, как гептан или бензол, ионные пары из водной фазы в органическую переходят лишь в незначительной степени, если только сочетание аниона с катионом не является очень липофильным. Так, например, ТЭБА весьма неэффективен как катализатор в системе бензол/вода [28] и даже в такой системе, как дихлорметан/вода [2]. При использовании этих растворителей рекомендуют соли тетрабутиламмония или соли даже с еще большими катионами, такими, как тетра-н-пен-тиламмоний, тетра-н-гексиламмоний или аликват 336. [c.88]

    Кислотно-основной характер системы определяется типом заместителей и электроноакцепторные группы усиливают кислотность соли или основность соответствующего илида. В этих случаях для отрыва а-протона пригодны слабые основания, например карбонат калия. В более общем случае, когда заместителей, сильно повышающих кислотность, мало или они отсутствуют, используют, как правило, сильные щелочи литий-органические соединения, амид натрия в жидком аммиаке, ал-ко сиды щелочных металлов в гидроксильных растворителях или в диметилсульфоксиде либо димсильный анион в ДМСО. Стабилизованные (наличием групп Р = СООР, СМ и др.) илиды можно выделить. В то же время хорошо известно, что обычные фосфониевые илиды чувствительны и к воде, и к кислороду, поэтому стандартная методика требует применения тщательно высушенных растворителей и инертной атмосферы. Под действием воды происходит необратимый распад с образованием ал-килдифенилфосфина и бензола. На воздухе протекают следующие реакции  [c.251]

    Для некоторых из этих комплексов и в жидкой, и в твердой фазах обнаружено существование равновесия между низкоспиновым и высокоспиновым Т2д(12двд) состояниями. Комплекс I низкоспиновый и при комнатной, и при более низких температурах, тогда как для комплексов II и III характерно состояние спинового равновесия как в твердом состоянии, так и в растворе. Комплекс IV при температурах, пре-выщающих 180 К, является существенно высокоспиновым. В твердом состоянии спиновое равновесие в очень больщой степени зависит от аниона. Термодинамические параметры такого взаимного превращения можно определить из температурной зависимости восприимчивости так, установлено, что для комплексов II и III в растворе АН составляет соответственно + 4,6 и + 2,8 ккал/моль. Рентгеноструктурный анализ кристаллов показывает, что метильные группы — заместители в пиридиновом цикле — взаимодействуют с циклом. Таким образом, поле лигандов в комплексе IV ослаблено в такой степени, что этот комплекс представляет собой высокоспиновое соединение, тогда как комплекс [c.155]

    В реактор / заливают раствор нитрата аммония (80—100 г/л), нагревают до заданной температуры. Затем при интенсивном перемешивании в него с постоянной скоростью прибавляют раствор натриевого жидкого стекла с плотностью 1,24 г/см . Количество ЫН4ЫОз, необходимое для осаждения силикагеля, рассчитывают из соотношения ЫН4/N3 = 1,2. Конечная концентрация 5102 в суспензии должна составлять 5%. Образовавшийся гидрогель отфильтровывают на фильтр-прессе 3 и отмывают до отсутствия в нем анионов. В тех случаях, когда необходимо освободиться от хемосор-бированных ионов натрия, гидрогель подвергают в реакторе 2 ка-тионообмену с солями аммония (например, 5% раствор ЫН4ЫОз). Гидрогель выдерживают в реакторе 2 при температуре осаждения и перемешивании в течение 1 ч. Осадок снова отфильтровывают и промывают на фильтре 3. Затем отжимают под прессом 4 до определенной влажности. Последняя влияет на характер пористой структуры геля и радиус пор (прокаливание при 900 °С) [ПО]  [c.137]

    Более подробно изучена анионная полимеризация мономеров ( THpojt, акрилоиитрил, метилметакрн. шт) в жидком аммиаке под влиянием амида натрия. Механизм этого ироцесса может быт . представлен в виде следующей схемы  [c.140]

    Катализаторы катиоп1 ой полимеризации не вызывают образо-р.апия полиакрилонитрила. Это объясняется тем, что N-гpyпцa акрилонитрила, притягивая электроны тг-связи, смещает электронную плотность к атому углерода, при кс тором находится замещающая группа. Полимеризация акрилонитрила происходит в присутствии катализаторов анионной полимеризации, например оснований. Такими катализаторами мо1 ут служить натрий в жидком аммиаке или третичный фосфин . В нервом случае инициирование процесса можно представить в виде следующего уравнения  [c.333]


Смотреть страницы где упоминается термин Аниониты жидкие: [c.63]    [c.145]    [c.177]    [c.507]    [c.603]    [c.430]    [c.39]    [c.281]    [c.49]    [c.47]    [c.134]    [c.360]    [c.81]    [c.51]    [c.236]   
Фотометрический анализ (1968) -- [ c.347 ]

Ионообменный синтез (1973) -- [ c.14 , c.155 , c.159 , c.184 , c.190 , c.193 , c.194 ]




ПОИСК





Смотрите так же термины и статьи:

Анионный обмен между твердой и жидкой фазами

Вторичные амины жидкие аниониты

Жидкие радиоактивные отходы анионите

Образование о-карборановых двухзарядных анионов в жидком аммиаке

Электроды на основе жидких анионитов



© 2025 chem21.info Реклама на сайте