Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азот, изотопный анализ водороде

    Спектральный изотопный анализ водорода, содержащегося в воде, может проводиться теми же методами, что и анализ водорода. Это подтверждается результатами работ в которых было показано, что прибавление значительных количеств кислорода и азота к анализируемому газу не вызывает изменения [c.555]

    Книге предпослано введение авторов, относящееся по существу ко всему руководству. В нем изложены некоторые общие вопросы, связанные с проведением синтезов с мечеными атомами. Рассмотрена номенклатура, позволяющая обозначать органические соединения, содержащие всевозможные изотопы в самых различных комбинациях и сформулированы шесть основных правил, лежащих в основе такой номенклатуры. Кроме того, во введении рассмотрены некоторые наиболее существенные особенности синтезов с изотопами (необходимость использования микрометодов, вакуумной техники и т. д.), приведены наиболее важные характеристики изотопов водорода, углерода, азота, кислорода, фосфора, серы и галоидов, а также указаны общие принципы изотопных анализов как стабильных, так и радиоактивных изотопов. Рассмотрена возможность изотопного фракционирования в процессе работы с изотопами легких элементов, [c.6]


    Радикал I легко образуется при окислении соответствующего амина перекисью водорода. Амин, в свою очередь, очень просто получается конденсацией аммиака с фороном. На этом основан метод изотопного анализа азота, разработанный недавно О. Л. Лебедевым, М. Л. Хидекелем и Г. А. Разуваевым [66]. Аммиак, содержащий смесь изотопов и переводился в амин, который далее окислялся в радикал I. Относительное содержание изотопов легко определить по спектру ЭПР. Этот метод имеет ряд преимуществ легкость получения радикала, отсутствие заметного изотопного эффекта, легкость анализа спектра. [c.130]

    Азот, обогащенный изотопом до 28—42%, приготовляли термодиффузионным методом из газообразного азота, содержавшего 0% Ы . Очистка азота от примеси кислорода производилась на никель-хромо-вом катализаторе при 250—300°. Перед каждым измерением скорости изотопного обмена катализатор восстанавливали водородом и откачивали в течение 3—4 час до вакуума 10- мм рт. ст. Благодаря большому объему циркуляционного контура (785 см ) изменением давления газа в системе при отборе проб можно было пренебречь. Во время каждого опыта отбирали через определенные промежутки времени не менее трех проб, изотопный анализ которых на содержание и [c.194]

    Определение газов. Определение водорода, кислорода и азота в металлическом хроме проводят методами вакуум-плавления [848, 858], изотопного разбавления [322], спектрального [11, 406, 474] и активационного анализа [596, 698, 1005]. Описаны [461] различные методы определения газов в хроме. Методы опре-. деления азота в хроме детально описаны в [84]. Метод вакуум-плавления определения кислорода и азота основан на плавлении образца в графитовом тигле при высоком вакууме выделяющиеся газы собирают и анализируют. Для анализа наиболее целесообразно использовать методы газовой хроматографии [284, 858] они позволяют достигать высокой чувствительности даже при анализе проб газов малого объема. [c.180]

    Поэтому предъявляемое к эксперименту требование состоит в том, что необходимо одновременно определить скорость реакции синтеза аммиака и скорости обеих реакций обмена. С этой целью очищенный исходный син-тез-газ (смесь 3 частей водорода и 1 части азота) доводится примерно до состояния равновесия путем пропускания его через содержащий катализатор реактор при температуре более высокой, чем та, при которой изучается реакция синтеза аммиака. После этого стехиометрическая смесь водорода с азотом, обогащенным изотопом, вводится в исходный синтез-газ, находящийся теперь в состоянии, близком к химическому равновесию, но далеком от изотопного равновесия. Далее эта смесь пропускается сначала через реактор, содержащий небольшое количество катализатора (причем определяются скорость синтеза и скорость первой реакции обмена), а затем — через реактор, содержащий гораздо большее количество катализаторов, благодаря чему оказывается возможным определить скорость более медленной второй реакции обмена. Скорость химической реакции определяется путем химической оценки количества аммиака, содержащегося в газе, отходящем из первого реактора, тогда как скорости обеих реакций обмена определяются с помощью масс-спектрометрического анализа газа, отходящего из каждого реактора. В результате проведения таких экспериментов Марс и сотр. [146] установили, что стехиометрическое число равно единице, и тем самым подтвердили высказанное ранее мнение, что хемосорбция азота является скорость-определяющей стадией реакции синтеза аммиака. [c.365]


    Углерод в кремнии определяют высокотемпературным окислением образца серой, кислородом или кислородсодержащими соединения.ми с последующим из.мерение.м количества образовавшихся ЗОг или СОг [8—11]. Анализ кремния на содержание азота основан на восстановлении примеси до аммиака или элементного азота [12] для определения водорода и кислорода используют также восстановительное плавление с последующим измерением количества или изотопного состава выделяющихся газов [13—17]. [c.153]

    При спектрально-изотопном методе исследования материалов в зависимости от величины растворимости азота металлы могут быть разделены на две группы металлы с низкой растворимостью азота (10 —10 вес. %) — к ним относятся железо, молибден, вольфрам, кобальт, никель и другие — и металлы с повышенной растворимостью — титан, цирконий, гафний, торий, ванадий, ниобий, тантал. Для разложения некоторых металлов первой группы достаточны температуры низкотемпературного варианта уравновешивания (1100—1200° С). Нитриды ряда металлов столь устойчивы, что их эффективное разложение затруднительно даже в условиях высокотемпературной установки (1600—1900° С). Например, анализ титана, циркония требует специальных мер для их растворения в ванне. Скорость изотопического уравновешивания для систем азот — металл меньше, чем для систем водород — металл. [c.143]

    Элементный и изотопный спектральный анализ предполагает качественное и количественное определения элементного и изотопного состава пробы по спектрам испускания, расположенным в диапазоне от ближней инфракрасной до рентгеновской области. Иногда для этих целей применяются и молекулярные спектры испускания или поглощения. Примером мол<ет служить определение водорода, азота и кислорода в газовых смесях, которое может проводиться по молекулярным спектрам двухатомных молекул Нг, N2, О2. Точно так же изотопный [c.8]

    Поправка холостого опыта F колеблется от опыта к опыту в некоторых пределах. Ошибка определения этой поправки определяет чувствительность спектрально-изотопного метода. Для водорода и азота чувствительность доходит до 0,1 см /100 г ( iO %). Методы анализа кислорода еще недостаточно разработаны, и данные о чувствительности нока отсутствуют, но можно полагать, что она того же порядка. [c.206]

    Содержащееся в продуктах реакции соединение, имеющее в своем составе индикаторный изотоп, должно быть переведено в форму газа, удобного для масс-спектрометрических определений. Вводимый в масс-спектрометр образец не должен содержать воздуха ввиду вредного воздействия последнего на раскаленную нить катода и его разбавляющего эффекта при определениях изотопных составов кислорода и азота. Аппарат, превращающий меченый продукт реакции в газообразную форму, должен быть снабжен собственной вакуумной установкой. В остальном конструкция его зависит от рода проводимой в нем реакции. В литературе имеется обзор по методам приготовления образцов для масс-спектрометрических анализов азота, водорода, углерода, кислорода и серы [148]. [c.98]

    Анализ азота. Азот имеет два стабильных изотопа и Их содержание в природном азоте составляет 99,62% и 0,38% соответственно. Для изотопного анализа азота может применяться ряд полос, например, полосы N2 А, =2976,8 А или 3159,3 А. Первая имеет изотопический сдвиг около 6 Л, вторая — 3,4 А, зато рторая полоса свободна от наложений полос распространенных газов, в то время как на полосу А, = 2976,8 А накладывается система интенсивных полос СО, часто присутствующега в разряде как загрязнение. Для анализа азота удобна установка, аналогичная той, которая применяется для изотопного анализа водорода [c.280]

    В круговороте веществ в биосфере постоянно участвуют в основном одни и те же элементы водород, углерод, азот, кислород, сера. Из неживой природы они переходят в состав растений, из растений — в животных и человека. Атомы этих элементов переходят из организма в организм и удерживаются в круге жизни сотни миллионов лет, что подтверждается данными изотопного анализа. Указанные пять элементов называют биофильными элементами (жизнелюбивыми), при этом не все их изотопы, а только легкие. Так, из трех изотопов водорода Н, Н, биофильным является только Н. Из трех природных изотопов кислорода 0, О, 0 биофилен только 0, а из изотопов углерода — только 12С. [c.600]

    Для регистрации фототока может служить или стрелочный микроамперметр чувствительностью 10 а на деление шкалы, или самопишущий потенциометр типа мер, ПСР или ЭПП-09, чувствительностью 10 мв на всю шкалу, вход которого зашунтирован сопротивлением около 200 ом. Фотоприставка вА1есте со спектрографом ИСП-51 или монохроматором УМ-2 используется для большинства задач спектрального анализа газов (определение неоно-гелиевой смеси в воздухе, гелия в неоне, неона в гелии, азота в аргоне, азота и водорода в гелии). В сочетании со спектрографом с дифракционной решеткой ДФС-3 фотометр применяется при анализе изотопного состава водорода. [c.111]

    Массон (1967) подробно изучил различные аспекты этого способа, включая методики анализа азота, кислорода и водорода, а также их точность и чувствительность по сравнению с другими методами. Витоль (1968) изучал точность и чувствительность метода изотопного разбавления, чтобы установить соотношение между общей ошибкой анализа и определяемой концентрацией в зависимости от веса образца. Были сделаны практические предложения по увеличению чувствительности метода. Закорина и сотр. (1968) исследовали высокотемпературное изотопное равновесие. [c.379]


    Эти реакции приводят к замене атомов протия с массовым числом 1 на атом дейтерия с массовым числом 2 и в соответствии с уравнением (9.9) к уменьшению волнового числа (v) инфракрасного излучения, необходимого для возбуждения колебания связи с замененным водородным атомом. Скорость обмена водорода на дейтерий в пептидных группах белков можно исследовать, наблюдая полосу амид II, расположенную при 1550 СМ для группы — ONH— и при 1450 см" для группы — OND— [33]. Как следует из уравнения (9.9), замещение водорода на дейтерий приводит к сдвигу полосы в сторону меньших волновых чисел. Этот сдвиг не так велик, как можно было бы предположить, подставляя массы водорода и азота в уравнение (9.9), поскольку полоса амид II вызвана не только колебаниями атомов азота и водорода, но также и движениями других атомов в пептидной группе. Интерес к кинетике дейтеро-обмена в белках возник в связи с наблюдением, согласно которому обменная реакция в коротких пептидах и полностью денатурированных белках при комнатной температуре и нейтральных рн протекает по уравнению первого порядка и имеет время полуобмена 0,1 —1,0 мин, а для обмена в нативных белках требуются часы и даже дни. Анализ кинетики изотопного обмена водорода в белках позволяет получать ценную информацию, касающуюся кинетических и термодинамических характеристик конформационных переходов [33]. [c.511]

    Выше мы указывали, что атомы водорода, а также атомы галогенов и алкильные радикалы легко присоединяются к молекулам олефинов, образуя новые, более сложные радикалы. С такой же легкостью происходит присоединение атомов Н С1, алкильных и других радикалов к молекуле кислорода, обладающей, подобно олефинам, известной ненасыщенностью, в результате чего образуются радикалы HOg, lOg и перекисные радикалы ROO. Имеются указания, что способностью присоединяться к молекулам непредельного строения обладают также гидроксил НО и окислы азота N0 и NOj. Так, Смит [1512] в результате анализа экспериментальных данных по фотолизу нерекиси водорода, HgOa, пришел к заключению о возможности существования малоактивных свободных радикалов НО3 и НО4, образующихся при присоединении радикалов НО и НО к молекуле кислорода. Точно так же в результате исследования изотопного обмена кислорода 0 между NgO 5 и молекулярным кислородом, а также в результате исследования окисления N0 кислородом, содержащим 0, Огг [1308] заключил, что механизм первой реакции должен включать образование радикала NO4 (см. также [963]), а второй — радикала NOg. [c.83]

    Измерение абсолютных значений изотопных отношений было осуществлено Ниром 11506] для аргона. Метод Нира применим к любому элементу, изотопы которого могут быть легко отделены один от другого и получены в чистом виде. Для получения отношения истинной распространенности к измеренной в своем масс-спектрометре Нир использовал образец, приготовленный из чистых Аг и Аг. Применяя электростатическую развертку спектра, он нашел, что дискриминации приводят к завышению истинного значения Аг/ Аг на0,63%. Нир использовал этот поправочный коэффициент, вызванный дискриминацией по массам, в своем приборе для получения величин относительной распространенности изотопов углерода, азота, кислорода и калия. Далее измерения были распространены на неон, криптон, рубидий, ксенон и ртуть [1507]. Лишь в случае аргона, когда проводилось прямое сравнение с эталоном, можно было с уверенностью исключить систематическую ошибку. Однако и для других исследуемых образцов принято, что систематические ошибки меньше ошибок, полученных ранее, и что величины распространенностей изотопов, определенные для этих образцов, позволят использовать их как вторичные эталоны. Интересно отметить, что для некоторых элементов, таких, как серебро, хлор и бром, которые состоят из двух изотопов со сравнимой распространенностью, абсолютные значения изотопных отношений точнее вычисляются на основании химических атомных весов и физически определенных масс изотопов, чем прямым измерением на масс-спектрометре. Для таких элементов химический атомный вес и атомный вес изотопа используются для проверки абсолютной точности измерений распространенности. Самый легкий элемент — водород — может быть использован для изучения дискриминации по массам благодаря большой величине отношения масс На и HD. Водород и дейтерий легко доступны задача получения истинных отношений H2/HD решается при анализе искусственных смесей известного состава и сравнением результатов измерения подобных образцов с измерениями смесей неизвестного состава. Это было сделано для образцов, содержащих 0,003—0,830 мол.% дейтерия [808], при использовании ионных источников без вспомогательного магнита. Результаты анализа определенного образца могут колебаться до 3% при изменении условий работы источника при наличии магнита источника изменение изотопных отношений достигало 25%. При использовании магнита источника значение отношения HD/Hg было всегда завышенным наблюдалась тенденция к еще большему увеличению этого отношения с увеличением количества анализируемого образца. Подобные эффекты не отмечались в отсутствие поля магнита источника. В этих условиях для смесей, содержащих около 0,1% дейтерия, была установлена абсолютная точность измерения 3%. [c.78]

    Несмотря на то что такие элементы, как сера и галогены, сравнительно часто входят в состав органических соединений, мы сочли возможным не включать их в рассмотрение, поскольку это повлекло бы за собой значительное увеличение размеров таблицы. Присутствие любого из этих элементов легко может -быть обнаружено благодаря необычно высокой относительной распространенности изотопов с массой (X-f 2), где X —масса основного изотопа. Интенсивность пиков ионов, содержащих изотопы, зависит от числа атомов присутствующих элементов. Эти ионы чрезвычайно характерны и легко могут быть обнаружены, что иллюстрируется приведенными ниже примерами, поэтому задача определения количества атомов серы, хлора или брома сравнительно проста. Если известно количество атомов серы или галогенов, то часть массы молекулы, приходящаяся на долю этих атомов, вычитается из измеренного значения массы, и число возможных комбинаций оставшихся атомов в молекуле обычно уменьшается до 2 или 3 путем сравнения оставшейся массы с соответствующими массовыми числами в таблице. Необходимо только рассчитать отношения распространенностей для небольшого числа комбинаций атомов, состоящих из соответствующего количества атомов углерода, водорода, кислорода и азота, которые затем добавляются к ранее установленным для атомов серы и галогенов. Такой расчет довольно сложен и трудоемок, но он может быть проведен на основе использования изотопных соотношений для углерода, водорода, кислорода и азота, представленных в приложении 1. Массы различных комбинаций атомов определяются простым арифметическим подсчетом. Значения масс основных изотопов элементов, используемых в таблице, следующие Щ = 1,008145 = 12,003844 = 14,007550. Эти величины были приведены Огата и Мацуда [1530], но могут быть в настоящее время уточнены наибольшее изменение имело место для (приложение 2). Использование старых цифр дает небольшую разницу при уровне точности, необходимом при химическом анализе, особенно если иметь в виду, что при измерении масс с использованием масс-спектрометра путем сравнения неизвестной массы с известной необходимо, чтобы разница между ними была возможно меньше, а числа углеродных атомов в сравниваемых ионах мало бы отличались одно от другого. [c.301]

    Метод изотопного разбавления может быть применен разнообразными способами для анализа сложных органических смесей. Особенно широкое распространение он начинает получать в биохимии. Работы в этом направлении были выполнены Риттенбергом и Фостером (1940) с применением, стабильных тяжелых изотопов водорода, углерода и азота для определения ряда аминокислот в гидролизатах гемоглобина и альбуминов, а также для определения пальмитиновой кислоты в животных жирах. Для этого-синтезировалось небольшое количество каждого из определяемых соединений, меченное тяжелым изотопом какого-либо из перечисленных элементов, и несколько миллиграммов его прибавлялось к гидролизату. После -этого из смеси изолировалась порция этого же соединения и масспектро- [c.300]

    Вышеописанный метод применяли также для элементарного анализа органических соединений с целью определения содержания кислорода [141,142], углерода[143]и азота [144] с использованием изотопов 0 , и N1 . Павеска исследуемого соединения совместно с известным количеством меченого соединения (скажем, Оз" илп N Hg) обычно сжигается или пиролизуется пр11 высокой температуре, а в продуктах сгорания определяется степень разбавления прибавленного меченого изотопа. В идеальном случае можно проводить одновременное определение углерода, азота, водорода и кислорода, используя универсальные меченые соединения, содержащие дейтерий, 14 и 0 , и последовательно определяя все четыре изотопных состава этих элементов в продуктах сгорания. Затруднения, возникающие при определении дейтерия (рассмотрены ниже на стр. 99), иока ограничивают возможности применения этого метода к определениям водорода [144]. [c.97]


Смотреть страницы где упоминается термин Азот, изотопный анализ водороде: [c.282]    [c.102]    [c.453]    [c.102]    [c.925]    [c.105]    [c.202]    [c.202]   
Спектральный анализ газовых схем (1963) -- [ c.267 ]




ПОИСК





Смотрите так же термины и статьи:

Азот водород

Азот, изотопный анализ

Водород, изотопный анализ



© 2025 chem21.info Реклама на сайте