Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азот растворимость в металлах

    Комплексон HI, как и другие комплексоны, образует растворимые внутрикомплексные соли со многими металлами. При этом металл замещает атомы водорода карбоксильных групп —СООН, а также связывается координационной связью с атомами азота  [c.337]

    Из рис. 36 видно, что диссоциация азота протекает при более высоких температурах, чем водорода, поэтому в процессе высокотемпературной пайки азот, содержащийся в газовых средах, находится в молекулярном состоянии. Растворимость азота в металлах зависит от способности последних взаимодействовать с ним с образованием нитридов. Поэтому азот хорошо растворяется в железе, хроме, марганце, ванадии, титане, молибдене, цирконии и других металлах, с которыми он образует [c.137]


    Порошкообразные V, Nb и Та адсорбируют значительные количества водорода, кислорода и азота, образуя твердые растворы внедрения. Неметаллы при этом переходят в атомарное состояние, и их электроны участвуют в образовании металлических связей в кристаллической решетке. При нагревании растворимость неметаллов возрастает, а характер связей между атомами металл — неметалл меняется. Изменяются и свойства соединений. Так, постепенное накопление кислорода в ниобии приводит к образованию нижеследующего ряда соединений  [c.287]

    Фазы внедрения образуются и при взаимодействии титана, циркония и гафния с углеродом и азотом. Растворимость этих элементов в титане и его аналогах значительно меньше, чем водорода, хотя они также образуют твердые растворы внедрения. Поскольку атомные радиусы углерода и азота больше, чем водорода, предельный состав фаз внедрения в этом случае отвечает формуле ЭС и ЭЫ, т. е. заполняются только октаэдрические пустоты в ГЦК решетке. Эти фазы относятся к наиболее тугоплавким. Ниже приводим температуры плавления карбидов и нитридов в сопоставлении с температурами плавления металлов  [c.243]

    Фазы внедрения образуются при взаимодействии титана (как и циркония, и гафния) с углеродом и азотом. Растворимость этих элементов в титане и его аналогах значительно меньще, чем водорода. Поскольку атомные радиусы углерода и азота больше, чем у водорода, предельный состав фаз внедрения в этом случае отвечает формуле ТЮ и (Т Мх= 0,56-1)1 т.е. заполняются только октаэдрические пустоты в ГЦК решётке. Эти фазы относятся к наиболее тугоплавким. Следует отметить, что температуры плавления карбидов и нитридов существенно вьппе, чем самих металлов. А сплав 80% Т1С + 20% НЮ плавится рекордно высоко - при 4215 С. Эго самый тугоплавкий из всех известных в настоящее время материалов. Карбиды и нитриды титана и его аналоги к тому же обладают высокой твердостью, жаростойкостью, исключительно коррозионностойки и инертны по отношению к расплавленным металлам. [c.119]

    Вследствие значительно меньшей по сравнению с азотом растворимости гелия в крови — что особенно сказывается в условиях работы водолазов при высоких давлениях — создание воздуха искусственного состава, в котором азот заменен гелием, в значительной мере устраняет кессонную болезнь. Гелий применяется в воздухоплавании для наполнения дирижаблей, для получения низких температур, в металлургии для продувания расплавленных металлов и для ведения плавок в инертной атмосфере. Большое распространение имеют разрядные трубки, наполненные гелием они дают свет различных оттенков применяются для реклам и витрин. Гелий в смеси с кислородом применяется в медицине для лечения астмы. [c.17]


    Для практики существенно, что растворимость этих газов в жидком железе значительно выше, чем в твердом, и поэтому при кристаллизации жидкой стали могут возникать дефекты из-за присутствия газовых пузырей. Растворимость газов в металлах заметно зависит от концентрации других элементов. Так, присутствие углерода уменьшает растворимость азота в жидком железе, а ванадий значительно увеличивает ее. Влияние третьего компонента на растворимость газов впервые было установлено И. М. Сеченовым, изучавшим поглощение углекислого газа кровью. Им было найдено уравнение [c.91]

    Предельная растворимость азота в металлическом ниобии, т. е-максимальная концентрация твердого раствора азота в металле на поверхности раздела между металлом и поверхностной пленкой нитрида металла, изучалась рядом исследователей. [c.150]

    Альбрехт и Гуд [3] выдерживали ниобиевые цилиндры в азоте при атмосферном давлении и изучали радиальное распределение азота в металле. Они определили зависимость предельной растворимости от температуры  [c.150]

    Данное равенство косвенно указывает на то, что процессу растворения молекулярного азота в металле предшествует диссоциация его на атомы. В а-железе азот растворяется в меньшей степени, чем водород, но при нагреве выше 900° С растворимости этих газов в железе приблизительно равны. Зависимость растворимости азота в железе от температуры показана на рис. 38 (21]. [c.139]

    Азот увеличивает растворимость Ре и N в литии и термический перенос массы, азотирует поверхностный слой некоторых нержавеющих сталей. Водород в жидком сплаве натрия с калием вызывает охрупчивание ниобия. Присутствие углерода в жидком натрии приводит к науглероживанию поверхности нержавеющих сталей, находящихся в контакте с жидким металлом. [c.147]

    К олеофильным загрязнениям нефти относятся вещества, растворимые в нефти органические соединения, содержащие серу, азот, кислород, галоиды и комплексные соединения металлов, ухудшающие качество нефтепродуктов. Ниже приведено примерное содержание олеофильных соединений в нефти  [c.11]

    Эти формулы верны для нагрева и охлаждения трубы при условии, что концентрация примеси (кислород, азот и т. д.) в жидком металле меньше, чем предел растворимости окиси при рабочей температуре. Если это неверно, коэффициент теплоотдачи сильно уменьшается вследствие увеличения сопротивления теплопереносу на границе стенка — жидкость. Минимальное значение числа Нуссельта при нагревании жидкого металла, загрязненного примесями, можно найти в [1] [c.337]

    Интересно отметить, что растворимость азота в а-Ре увеличивается с повышением температуры, а в 7-Ре, наоборот, уменьшается. В некоторых случаях энергия взаимодействия атомов газа И металла столь велика, что превышает затраты энергии на диссоциацию и раздвижение атомов металла. Поэтому при растворении газа в металле происходит выделение тепла и растворимость уменьшается с ростом температуры. Это имеет место, например, при растворении водорода в титане. [c.90]

    Широко распространены твердые растворы внедрения с проявлением металлической связи, в которых размеры внедряющихся атомов сравнительно малы и не должны превышать размеры пространства между узлами кристаллической решетки основного компонента (размеры пустот, рис. 5.20), иаиример металлов rf-элементов. Так, атомы бора, углерода, азота могут рас-, полагаться в октаэдрических пустотах. В твердых растворах внедрения наблюдается ограниченная взаимная растворимость компонентов. [c.134]

    Значения растворимости азота, показанные на рисунке, справедливы для азота, находящегося в равновесии с нитридами железа. Суммарное содержание азота выше указанных значений. Из других металлов азот при нагреве наиболее интенсивно поглощается титаном и его сплавами. Зависимость поглощения титаном азота от времени выдержки при различных температурах изображена на рис. 39. Процесс поглощения азота титаном идет с замедлением, образующийся поверхностный слой препятствует интенсивному проникновению газа в глубь металла. При комнатной температуре растворенный азот из металла не выделяется. По-видимому, он связан в более прочные соединения, чем водород. Увеличенное содержание азота в металлах существенно влияет на их механические свойства. В сталях азот вызывает резкое снижение относительного удлинения и может явиться одной нз причин их старения, приводящего к повышению твердости, снижению пластичности и ударной вязкости. Если азот в железе зафиксирован в форме пересыщенного твердого раствора, то при комнатной температуре металл склонен к старению, связанному с выделением субмикро-скопических частиц нитрида Ре4Ы. [c.139]

    Большой класс хорошо растворимых внутрикомплексных солей дают различные комплексоны, например три-лон Б и т. д. Связь металла с лигандом осуществляется через атом азота и карбоксильную группу. Ввиду хорошей растворимости получаемых соединений их выделение из раствора иногда представляет определенные [c.64]


    Анализ образцов из того же сечения печной трубы, вырезанных послойно по направлению от внутреннего диаметра к наружному, показал, что внутренняя поверхность данной трубы подверглась науглероживанию на глубину до 3 мм (в макроструктуре найдены карбиды типа МсггСе). Это способствовало значительному снижению точки плавления стали и диффузии азота в глубь металла впереди зоны карбидной фазы из-за плохой растворимости в ней. [c.162]

    Отношение к элементарным веществам. Элементарные вещества по их отношению к титану, цирконию и гафнию разделяют на четыре группы. К первой группе относят галогены и халькогены, образующие с этими металлами соединения ионного или ковалентного характера, не растворимые или ограниченно растворимые в металлах. Ко второй группе относят водород, элементарные вещества группы азота, углерода, бора и большинство металлов В-групп, взаимодействующие с этими металлами с образованием соединений интерметаллидного характера и ограниченных твердых растворов. В третью группу входят металлы — ближайшие соседи титана, циркония и гафния по периодической системе справа, образующие с ними непрерывные твердые растворы, и, наконец, в четвертую — благородные газы, щелочные, щелочноземельные и редкоземельные (кроме скандия) металлы, не взаимодействующие с титаном, цирконием и гафнием. [c.79]

    Высококипящие фракции нефти наряду с индивидуальными углеводородами в значительном количестве содержат гетероор-ганические соединения, в состав которых одновременно входят углерод, водород, кислород, сера, азот и металлы. Эти соединения объединяют в группу смолисто-асфальтеновых веществ. По отношению к различным растворителям их подразделяют на четыре группы 1) нейтральные смолы, растворимые в легком бензине (петролейном эфире), пентане 2) асфальтеиы, нерастворимые в петролейном эфире, но растворимые в горячем бензоле  [c.24]

    Назначение экстракционных процессов — деасфальтизации, селективной очистки, депарафинизации — выделение из перерабатываемого сырья асфальтов, экстрактов, парафинов и церезинов. Сырье (смесь углеводородов и с лементорганических соединений, содержащих серу, азот, кислород, металлы) разделяется на группы компонентов при помощи растворителя- растворимая часть образует фазу экстрактного раствора, нерастворимая — фазу рафинатного раствора. Целевой продукт может переходить как Б рафинатную (селективная очистка), так и в экстрактную (деасфальтизация, депарафинизация) фазы. В производстве масел применяются различные типы экстракционных процессов- экстракция неполярными (деасфальтизация) и полярными (селективная очистка) растворителями, экстрактивная кристаллизация с использованием полярных и неполярных растворителей (депарафинизация). [c.199]

    Характерной особенностью элементов подгруппы титана является образование твердых растворов и фаз внедрения с легкими неметаллами (Н, В, С, N1 О). Это обстоятельство накладывает заметный отпечаток на металлохимию этих элементов. Титан и его аналоги обладают способностью сильно поглощать водород. Фазам внедрения отвечают номинальные составы ЭН и ЭН2(Т1Н2, 2гН и 2гН2, НШ и НШг)- Для этих фаз характерна ГЦК-решетка. Фазы внедрения образуются и при взаимодействии титана, циркония и гафния с тлеродом и азотом. Растворимость этих элементов в титане и его аналогах значительно меньше, чем водорода, хотя они также образуют твердые растворы внедрения. Поскольку атомные радиусы углерода и азота больше, чем водорода, предельный состав фаз внедрения в этом случае отвечает формуле ЭС и ЭК, т.е. заполняются только октаэдрические пустоты в ГЦК-решетке. Эти фазы относятся к наиболее тугоплавким. Ниже приведены температуры плавления карбидов и нитридов металлов подгруппы титана  [c.396]

    В последние годы сделаны попытки математического моделирования процесса окисления [ 14, 15]. Однако все теории пока непригодны к многокомпонентным сплавам и поэтому не будем останавливаться на них подробнее. Разработка количественной теории даже для двойного сплава чрезвычайно сложна, если оба компонента могут в условиях эксперимента образовывать устойчивее окислы. Описать механизм окисления такого сплава очень трудао вследствие того, что он обусловлен большим числом переменных факторов, определяющих скорость протекания процесса. К таким факторам относятся скорости диффузии реагентов в метйлле и окисле, взаимодействие окислов (взаимное растворение, образование химических соединений), вторичные реакции окисленм-вос-становления, частичная возгонка окислов, растворение кислорода и азота в металле, внутреннее окисление, обеднение подокалины легирующими элементами, порообразование в подокисном слое и др. К этому следует добавить недостаточность информации о взаимной растворимости окислов, о возможной степени дефектности реальных окислов, о закономерностях взаимодействия металла с окалиной, о характере миграций катионов и анионов в процессе реакционной диффузии и т.д. [c.12]

    Растворимость металла. Металлический никель растворяется с выделением водорода в НС1 и в разбавленн( й H SOj. Растворение его в HNO,, происходящее даже на Жзлоду, сопровождается выделением окислов азота. [c.143]

    Азот взаимодействует с танталом так же, как и с ниобием, но у этой реакции есть свои особенности. На первой стадии реакции Та + N также образуется а-фаза всс) твердого раствора азота в металле. В некоторых работах определены пределы растворимости числовые значения, как и для ниобиевой системы, несколько различаются, что объясняется различиями в методиках. Согласно Вогану, Стюарту и Шварцу [16], растворимость азота в тантале, находящемся в равновесии с субнитридом Тад Н неизвестного состава (граничная растворимость), составляет при 500, 1000 и 1500° С соответственно 1,8 2,75 и 3,70 ат. % N. Более подробно растворимость изучалась Гебхардтом, Зеггеззи и Фроммом [17]. Авторы использовали диа- [c.153]

    Учитывая, что одной из основных задач фундаментальных исследований проблемы увеличения нефтеотдачи пластов является поиск принципиально новых методов и химреагентов для извлечения нефти из недр, нами разработан новый метод извлечения остаточной нефти, основанный на принципе взаимодействйя комплексообразующих химреагентов с полярными нефтяными компонентами. Метод основан на воздействии химреагентов на металло-порфирины нефти, что приводит к разрушению асфальтосмолистых структур. Установлено, что при воздействии поли-функциональных реагентов на нефть на границе нефть - вода происходят обменные процессы между ассоциатами нефти и химическими добавками, что приводит к разрушению структуры, снижению вязкости нефти и к повышению нефтеотдачи пласта.Наиболее эффективными в этом плане являются азот-, фосфор- и кислородсодержащие реагенты, растворимые в воде. В работе представлены результаты комплексного изучения механизма взаимодействия относительно недорогих комплексооб разующих реагентов с нефтями различных месторождений, приводящие к изменению их физико-химических свойств. На основе исследований разработаны [c.4]

    В большинстве случаев адипиновую кислоту получают в две стадии. Первая — окисление циклогексана в циклогексанон и цик-логексанол воздухом (или смесью кислорода и азота, обогашенной кислородом) в газо-жидкостной системе при 3—5 ат и 120—-130 °С в присутствии растворимых нафтенатов и стеаратов металлов с несколькими валентными состояниями (Со, Мп, Си, Ре, Сг). Реакцию можно проводить также в присутствии органических перекисей или альдегидов и кетонов в качестве промоторов. Вторая стадия — окисление смеси циклогексанол — циклогексанон — осуществляется в промышленности по непрерывной схеме 50%-ной азотной кислотой в присутствии твердых катализаторов (медь, ванадий) при 80 °С и небольшом давлении. И в этом случае можно проводить окисление воздухом, но в иных, чем на первой ступени, условиях. [c.159]

    Элементарные вещества по их отногнению к титану разделяют на четыре группы Г) галогены и халькогены, образующие с титаном соединения ковалентного или ионного характера, нерастворимые или ограниченно растворимые в титане 2) водород, бериллий, эле 1ентарные вещества подгрупп бора, углерода, азота и большинство металлов В-подгрупп, образующие с титаном соединения интерметаллидного характера и ограниченные твердые растворы 3) налоги и ближайшие соседи титана по 1ер Юдической системе, образующие с титаном непрерывные ряды твердых растворов 4) благородные газы, щелочные, ще.лоч го-земельные и редкоземельные (кроме скандия) металлы, не образующие с титаном ни соединении, ни твердых растворов. [c.262]

    В соответствии со значениями электродных потенциалов (см. табл. 37) цинк и кадмий взаимодействуют с водой и разбавленными растворами обычных кислот с выделением водорода, а ртуть не взаимодействует. Однако вследствие образования па поверхности цинка и кадмия нерастворимой гидроксидной пленки их взаимодействие с водой быстро прекращается. С азотной кислотой, как концентрированной, так и разбавленной, взаимодействуют все три металла с образованием соответствуюищх нитратов и нродуктов восстановления азота концентрированная серная кислота (содержащая больше 50% H2SO4) при нагревании действует так же на все три металла, как окислитель. В связи с растворимостью гидроксида цинка в водных растворах сильных щелочей с последними цинк взаимодействует с врлделением водорода. [c.330]

    Окись углерода растворяется в гидрогенизате несколько лучше азота (см. табл. 4), но все же растворимость ее лишь в 1,5—2,5 раза вьшге растворимости водорода. Она может накапливаться в цирку-лируюш ем водороде, что потребует удаления СО с отдувом. Содержание СО в водороде, используемом для гидроочистки над катализаторами, содержащими сульфиды металлов, ограничивают до 0,5— 1,0%. В процессе гидроочистки тяжелых нефтепродуктов суммарное содержание окислов углерода в водороде не должно превышать [c.23]

    Основные механизмы выведения тяжелых металлов из атмосферы -вымывание с атмосферньп<и осадками и осаждение иа подстилающую поверхность В осадках эти элементы присутствуют в растворимой (соли, комплексные ионы) и малорастворимой формах. Соединения ртуги в атмосферных осадках классифицируются на две фуппы Первая группа п]эедставлена ее элементной формой и органическими соединениями (например, Hg( Hз)2), а вторая - неорганическими производными (например, Hg2 l2). Основное количество ртути в осадках содержится в виде металлорганических соединений. Следует заметить, что в атмосферных осадках, как правило, преобладают водорастворимые формы тяжелых металлов, что, вероятно, обусловлено наличием в атмосфере кислых оксидов серы и азота, способствующих образованию растворимых соединений. По степени обогащения атмосферных осадков металлы располагаются в следующем порядке 7п > РЬ > Сё > N1 В работе [197] показано, что средние уровни свинца в осадках составляют 12 мкг/л, адя сельских районов (не подверженных урбанизации) 0,09 мкг/л для полярных областей и акваторий океанов 44 мкг/л для урбанизированных районов. [c.105]

    Независимо от механизма действия все растворимые в топливе ингибиторы должны обладать водовытесыяющими свойствами, например, алки-ламины вытесняют воду и сорбируются на поверхности металла за счет неспаренных электронов атома азота по схеме  [c.58]

    Смолы и осадки, образующиеся при окислении прямогонных реактивных и дизельных топлив, характеризуются высоким содержанием кислорода 45-50, серы 7-9, азота 0,5-2,0, зольных элементов (металлов) 7-9%. Среди зольных элементов обычно преобладают медь 1-3, цинк - до 1,0, кальций -до 1,0, железо, алюминий, олове и др. до 0,1%. Эти данные подтверждают активное участие в термохимических превращениях в топливах гетероатомных соединений, каталитическое н.ч. " кке металлов (медь, бронза) и химическое взаимодействие продуктов окисления с металлами. Зависимости осадкообразования в реактивных топливах от темперзт) . приведены на рис. 8. Снижение массы осадка при температ1 р2. 130- 90 С связано с повышением давления насыщенных паров (уменьшением доступа кислорода к поверхности топлива) и увеличением растворимости продуктов окисления в топливе. [c.87]

    Палладиевый комплекс получен из раствора, содержащего бромид-ион и пиридин 5H5N (этот лиганд-хороший донор, легко координируемый ионами металлов). Элементный анализ комплекса показал, что он содержит 37,6% брома, 28,3% углерода, 6,60% азота и 2,37% водорода. Это соединение слабо растворимо в ряде органических растворителей, его спиртовый и водный растворы не проводят электрический ток. Экспериментально установлено, что у данного комплекса нулевой дипольный момент. Запищите химическую формулу этого комплекса и укажите его предполагаемую структуру. [c.406]


Смотреть страницы где упоминается термин Азот растворимость в металлах: [c.643]    [c.113]    [c.10]    [c.76]    [c.163]    [c.276]    [c.379]    [c.116]    [c.10]    [c.42]    [c.132]    [c.399]    [c.425]   
Окисление металлов и сплавов (1965) -- [ c.17 , c.19 ]




ПОИСК





Смотрите так же термины и статьи:

Растворимость азота



© 2025 chem21.info Реклама на сайте