Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Палладий комплексные соединения

    ПЛАТИНОВЫЕ МЕТАЛЛЫ — груп па сходных между собой по физическим и химическим свойствам металлов рутений Ru, родий Rh, палладий Pd, осмий Os, иридий Ir, платина Pt. В природе встречаются вместе с платиной. Все П. м. стойки к химическим реагентам, образуют многочисленные комплексные соединения. [c.193]

    Комплексные соединения четырехвалентного палладия довольно неустойчивы как в растворе, так и в твердом состоянии. В некоторых случаях (аналогия с соединениями платины) при окислении двухвалентного палладия выделяются интенсивно окрашенные вещества, состав которых позволяет предполагать наличие в них трехвалентного палладия. Делаются попытки представить их строение и иным способом. Так, образующееся [c.151]


    Органические сульфиды образуют стабильные комплексные соединения с галогенами, органическими галоидпроизводными, галогенидами - тяжелых металлов и некоторыми другими веществами. Природа сил взаимодействия при комплексообразовании сульфидов с этими соединениями изучена недостаточно. Полагают [47], что донорно-акцепторная связь осуществляется за счет передачи неподеленной пары электронов атома серы на свободную валентную орбиталь атома металла (ртути, алюминия, олова, титана и др.). На структуру и свойства комплексных соединений влияют условия их образования, химическое строение сульфида и соединения, вступающего с ним в реакцию [48]. При взаимодействии сульфидов с бромом или иодом иногда образуются кристаллические комплексные соединения, а при взаимодействии с йодистыми алкилами и галогенированными жирными кислотами — кристаллические сульфониевые соли. Наиболее стабильны комплексные соединения сульфидов с галогенидами ртути, ацетатом ртути, солями платины, олова, титана, палладия, алюминия. В зависимости от химического строения и условий комплексообразования сульфиды могут присоединять различное число молекул одного и того же комплексообразователя (акцептора). [c.118]

    Если горячий нитритный раствор нейтрализовать едким натром по тимолфталеину (рН=10) (или, что практически равноценно, но удобнее, по тимоловому синему) до изменения желтой окраски в синюю, индий, медь, цинк, никель, кобальт, марганец, хром и железо количественно осаждаются и отделяются таким образом от платиновых металлов, за исключением палладия, комплексное соединение которого в этих условиях неустойчиво. Переосаждением осадок освобождается от следов платиновых металлов, кроме палладия последний затем легко отделяется осаждением диметилглиоксимом. [c.379]

    Успех хроматографического разделения палладия (II) и родия (III) определяется в основном тем, в какой мере предварительная подготовка растворов обеспечивает получение стабильных форм комплексных соединений одного состава. Для этого необходимо выполнить ряд условий раствор смеси солей перед хроматографированием следует обработать в тигле концентрированной хлороводородной кислотой применять бумагу, предварительно обработанную 6%-ным раствором хлорида лития, который играет роль высаливателя и поставщика хлорид-ионов добавить в подвижный растворитель хлороводородную кислоту. [c.213]


    Раствор обрабатывают избытком аммиака, при этом палладий образует растворимое комплексное соединение Pd(NHз)4, С1г, а иридий — гидрат окиси иридия 1г(0Н)з. [c.255]

    Палладий в рекомендованном растворе находится в виде прочного комплексного соединения, поэтому контактно на медной фольге не выделяется. После промывки водой заготовки переносят в раствор для химического меднения (см. табл. 15.2, раствор № I). В процессе меднения образцы, закрепленные на проволочках, периодически покачивают. По окончании меднения (15—20 мин) образцы промывают и переносят в ванну гальванического меднения (табл. 15.2, раствор № 2) для нанесения слоя меди толщиной 3—5 мкм ( затяжка меди в отверстиях). Затем на промытую и высушенную поверхность наносят защитный рисунок через сетчатый трафарет. Для этого образец устанавливают на фиксирующие шпильки трафаретной рамки и накладывают сетчатый трафарет при этом отверстия на заготовке платы должны точно совпадать с площадками на трафарете, защищающими отверстия от попадания в них краски. Защитный рисунок на заготовке получают путем продавливания через сетчатый трафарет с помощью резинового шпателя (ракеля) гальваностойкой краски для трафаретной печати марки СТ-3-13. Затем краску просушивают при 80—90 °С в течение 1,0—1,5 ч. [c.107]

    Так как прочность связи Pd — адденд меньше, чем Pt — адденд, то в комплексных соединениях палладия чаще наблюдаются отклонения от правила Иергенсена. [c.149]

    ОКИСЛЕНИЕ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ ПАЛЛАДИЯ [c.151]

    Образование оптически активных веществ не характерно для Pd (II) в силу их плоской конфигурации, однако если в состав внутренней сферы входит молекула оптически активного адденда, то и образовавшийся комплекс проявляет оптическую активность. Другие типы изомерии комплексных соединений палладия к настоящему времени не изучены. [c.153]

    Палладий как в двух-, так и в четырехвалентном состоянии образует различные комплексные соединения. Известны многочисленные комплексные соли двухвалентного палладия, содержащие аммиак. Почти все они соответствуют двум типам [Pd (NHg) ] Xj (соли тетраммин-палладия) и [Pd (NHg)2] Xj (соли диаммин-палладия).  [c.392]

    Напишите уравнения диссоциации в растворе следующих комплексных соединений, учитывая, что координационные числа ионов платины и палладия в степени окисления +2 равны 4  [c.86]

    Для платиновых металлов в соединениях характерны практически все степени окисления от О до +8. При этом отмечается тенденция к понижению максимальных степеней окисления в горизонтальных рядах. В вертикальных диадах обычно наблюдается соответствие степеней окисления. Так, элементы первой диады (Ки—Оз) могут проявлять максимальную степень окисления +8 (даже в соединениях первого порядка), элементы второй диады (КЬ—1г) достигают степени окисления +6 (в комплексных соединениях), а палладий и платина имеют типичные степени окисления +2 и +4. Элементы первой диады напоминают по свойствам элементы УПВ-группы — технеций и рений (подобно тому как железо напоминает марганец). Элементы же последней диады проявляют определенное сходство с элементами 1В-группы— серебром и золотом (подобное сходству между никелем и медью). [c.417]

    Гринберг Александр Абрамович (1898—1966)—советский химик, академик АН СССР. Исследовал строение комплексных солей платины, изомерию-производных платины и палладия, кислотно-основные и окислительно-восстановительные свойства комплексных соединений. Лауреат Государственной премии СССР. [c.159]

    Производные двухвалентных элементов особенно характерны для палладия и отчасти платины. Последняя образует очень большое число комплексных соединений, но лишь немного простых. Напротив, для палладия двухвалентное состояние является наиболее устойчивым и в том и в другом случае. [c.450]

    В растворе хлоридов палладий образует комплекс Pd lГ, константа нестойкости которых К = 6-10 [75]. Нитриты также образуют с палладием комплексные соединения. Хотя такие соединения получены в твердом виде и определена их кристаллическая структура [305], однако водные растворы этих комплексов мало изучены, о чем свидетельствует отсутствие в литературе соответствуют их величин констант нестойкости ионов Pd (N02) [75, 3061. [c.152]

    Для П. м. характерна высокая устойчивость к химич. воздействиям. Кроме Ов (окисляющегося в большей степени до 0з04), все П. м. при взаимодействии с кислородом образуют тончайшие поверхностные окисные пленки. П. м. не взаимодействуют с двуокисью углерода и азотом, но в атмосфере газообразных галогенов корродируют при повышенных темп-рах. С окисью углерода взаимодействует лишь Ни, образуя карбонил. Водород в П. м. (за исключением Р(1 и в слабой степени Р1) не растворяется. П. м. трудно поддаются действию кислот, за исключением Р(1, растворяющегося в горячей НКО,. Царская водка хорошо растворяет Р1 и Р(1, но слабо— Ни и совсем незначительно — НЬ и 1г. Последние два П. м. растворяются в царской водке после сплавления с КИЗО или с Na202, а также после спекания с ВаО . РЬ и нек-рые др. П.м. растворяются в ННО, после сплавления со значительным количеством Ag. Большинство П. м. взаимодействует с другими расплавленными металлами. Общей особенностью П. м. является способность восстанавливаться из их соединений до металлов при действии восстановителей и при нагревании. Все П. м. обладают большой склонностью к образованию комплексных соединений (см., напр.. Палладия комплексные соединения. Платины комплексные соединения). [c.40]


    Для титриметрического определе1 ия палладия предложено несколько косвенных обратных титрований. Большая часть методов основана на прибавлении избытка раствора ЕОТА (эти-тендиаминтетрауксусноп кислоты) и обратном титровании этого избытка одним из реагентов, количественно взаимодействующих с ЕОТА. Некоторые методы основаны на прибавлении к раствору палладия комплексного соединения какого-либо металла, [c.107]

    Вышли следующие тома т. 1, 1956 (общие сведения, воздух, вода, водород, дей-теряй, тритий, гелий и инертные газы, радон) т. 3, 1957 (главная подгруппа I группы, побочная подгруппа I группы) т. 4, 1958 (бериллий, магний, кальсий, стронций, барий) т. 7, 1959 (скандий — иттрий, редкие земли) т. 10. 1956 (азот, фосфор) т. И, 1958 (мышьяк, сурьма, висмут) т. 12, 1958 (ванадий, ниобий, тантал, протактиний) т. 14, 1959 (хром, молибден, вольфрам) т. 15, 1960 (уран и трансурановые элементы) т. 16. 19(Ю (фтор, хлор, бром, марганец) т. 18, 1959 (комплексные соединения железа, кобальта. никеля) т. 19, 1958 (рутений, осмнй, родий, иридий, палладий, платина). [c.127]

    Наиболее активным катализатором гидрокарбоалкоксилирования олефинов являются карбонилы кобальта. Карбонилы родия и иридия проявляют слабую активность при неудовлетворительной селективности. Карбонилы железа и никеля еще менее активны. Довольно успешно катализируют реакцию гидрокарбоалкоксилирования карбонилы рутения и комплексные соединения палладия. [c.268]

    В отличие от комплексных соединений платины (II), производные палладия (II) не подчиняются закономерности Курнакова. И цис-, и транс-диамины двухвалентного палладия при действии тиомочевины образуют тетратиомочевинные комплексы [c.150]

    Электростатические представления оправдываются для целого ряда других комплексных соединений, содержащих дипольные молекулы. Молекула воды (диполь, характеризующийся большой жесткостью) обладает дипольным моментом, равным 1,8. Дипольный момент молекулы ЫНз равен 1,5 (по сравнению с Н2О отличается меньшей жесткостью). Так как величина дипольного момента ЫНз меньше, чем у Н2О, то аммиакаты должны быть менее устойчивыми, чем гидраты. Действительно в случае соединений лития дело обстоит именно таким образом. Однако в некоторых случаях могут наблюдаться обратные соотношения. Часто устойчивость соединений нельзя объяснить с позиций электростатических представлений. Например, известно большое количество соединений с формально нульвалентным центральным атомом. Сюда относится ряд комплексных соединений платины, палладия и других металлов, например комплекс палладия с фенилизонитрилом, для которого были изучены реакции замещения с триарилфосфитами. Подобные реакции не могут сопровождаться окислительно-восстановительными процессами, так как оба вступающих в реакцию вещества характеризуются восстановительными свойствами. [c.239]

    На основании теории Косселя удалось объяснить сферическую симметрию комплексных соединений, но оставалось неясным, почему комплексы некоторых двухвалентных металлов (например, платины или палладия), построенные в форме квадрата, отличаются достаточной прочностью и не переходят Б более симметричные тетраэдрически построенные соединения. [c.240]

    Триады элементов VIII группы являются связующим звеном между четными и нечетными рядами больших периодов в таблице Менделеева. Упомянем в качестве примера триаду железа (Ре — Со — N1). Так, с одной стороны, железо очень сходно со своим левым соседом — марганцем. С другой стороны, налицо большое сходство между никелем и медью (оба характеризуются наиболее типичной валентностью +2, образуют аналогичные по составу и свойствам соединения их гидроокиси растворяются в избытке аммиака, давая при этом интенсивно окрашенные комплексные соединения и т. д.). Далее, по внешнему виду очень сходны палладий и серебро платина и золото — наиболее благородные металлы и т. д. [c.537]

    Важнейшим проявлением специфики электронного строения и вытекающих отсюда химических свойств платиновых элементов является их склонность к образованию комплексных соединений. Элементы-металлы других групп периодической системы, особенно поливалентные элементы переходных рядов, также дают комплексные соединения той или иной устойчивости практически со всеми известными лигандами. Спецификой комплексных соединений платиновых элементов и прежде всего наиболее изученных комплексов платины и палладия является высокая прочность ковалентной связи, обусловливающая кинетическую инертность этих соединений. Последнее даже делает невозможным определение обычными методами такой важной характеристики комплекса, как его /Сует- Обмен лигандами внутри комплекса и с лигандами из окружающей среды также затруднен. Это позволяет конструировать, например, октаэдрические комплексы платины (IV), в которых все шесть лигандов различны. Такие системы могут существовать без изменения во времени состава как в растворах, так и в твердом состоянии. Мы уже отмечали, что, напротив, осуществить синтез столь раз-нолигандмых комплексов для элементов-металлов, образующих пре- [c.152]

    Четырехвалентный палладий дает преимущественно комплексные соединения типа Мез [PdX ], называемые гексагалогенопалладатами (IV). Комплексных катионов он не образует. При прибавлении царской водки к К2 [Pd l ] или при пропускании через его раствор хлора, а также при растворении металлического палладия в царской водке в присутствии КС получается гексахлоро-(IV) палладат калия Ка [Pd lg] цвета киновари. [c.392]

    Для окисления Fe (И) в Ре (П1) используют азотную кислоту, а также другие окислители в зависимости от природы анализируемого объекта пероксидисульфат аммония, перманганат калия. Проведению реакции мешает ряд веш,еств. Прежде всего должны отсутствовать анионы кислот, которые дают более прочные ко1 шлексиые соединения, чем роданиды железа фосфаты, ацетаты, арсенаты, фториды, бораты, а также значительные количества хлоридов и сульфатов. Также должны отсутствовать элементы, ионы которых дают комплексные соединения с роданидом кобальт, хром, висмут, медь молибден, вольфрам, титан (III, IV), ниобий, палладий, кадмий, цинк, ртуть. [c.151]

    Ионы палладия и платины, как ионы благородных металлов, обладают сильными окислительными свойствами. Так, Р(1 на холоду окисляет СО до двуокиси углерода (чувствительная реакция открытия СО). Из растворов Р1С14 при действии избытка восстановителей выделяется платина. Ионы благородных металлов характеризуются исключительно выраженной способностью к комплексообразованию. Из большого числа комплексных соединений платины в лабораторной практике находит применение, как реактив на ион калия, платинохлористоводородная кислота. Образующийся при этой реакции хлороплатинат калия — малорастворимое вещество, кристаллизующееся в виде микроскопических желтых октаэдров. Этой реакцией пользуются в микрокристаллоскопии — методе определения вещества по форме кристаллов, наблюдаемых в микроскоп. [c.329]

    Соли металлов семейства платиноидов немногочисленны. В соответствии с общей тенденцией понижения характерных степеней окисления в горизонтальных триадах наблюдается следующая закономерность. Элементы первой вертикальной диады Ки и Оз, у которых стабильными являются высокие степени окисления, вовсе не образуют солей, где они выступали бы в качестве катионообразователей. Для элементов второй диады — родия и иридия — известны солеобразные производные, отвечающие степени окисления +3, главным образом сульфаты КЬг (804)3 -ИНзО и 1гз (804)3 -бНгО, а также двойные сульфаты типа квасцов [в чем проявляется горизонтальная аналогия со многими элементами в степени окисления +3 — А1 (+3), Ре (+3), Сг (+3) и т. п.1. Отметим, что стабилизация этих солей обусловлена образованием кристаллогидратов — аквакомплексов. Более многочисленны солеобразные соединения элементов третьей диады — палладия и платины, отвечающие главным образом их степени окисления +2. Так, получены Э804-2Н20, Э(МОз)з-21 20, 3(0104)2-41 20. Известен также ацетат палладия Р(1 (СН3СОО)2. Соли слабых кислот, не содержащие кристаллизационной воды, термически нестабильны. В избытке реагентов, включающих одноименный анион, они легко образуют комплексные соединения. Для степени окисления +4 существуют лишь малостойкие нитраты Э(КОз)4. [c.423]

    Комплексные соединения, отвечающие степени окисления +2, наиболее характерны для палладия и платины при к. ч. 4. Широко распространены комплексные галогениды [Рс1Г412+, [Р1Г41 , чрезвычайно устойчивые амминокомплексы [Э(МНз)4]2+. Так, для [Р1(ЫНз)4] + рА нест 38, а для [Рс1(КНз)4]2+ Р- нест 30. Комплексные галогениды платины и палладия типа Нг[ЭГ4] являются сильными кислотами и характеризуются высокой устойчивостью внутренней сферы, причем устойчивость комплексов растет в ряду С1 ->Вг"- 1 и для платины выше, чем для палладия  [c.424]

    Степень окисления +3 в комплексных соединениях наиболее типична для Ни, Оз, КЬ и 1г. Для платины и палладия такие производные неизвестны. Среди этих соединений распространены галогениды МезОГв], причем галогенидные комплексы рутения и родия кристаллизуются с одной молекулой воды (Мез[ЭГ,] НаО), а осмия [c.424]

    Соединения платиноидов используются в меньшей степени. Так, Рс1С12 используют как индикатор на угарный газ СО в атмосфере, поскольку СО Б растворах способен восстанавливать РсЗО до металлического палладия. Интерметаллические соединения платиноидов оказались перспективными сверхпроводниками со сравнительно высокими критическими температурами сверхпроводимости. Производные платины (+6), например Р1Рц, используются в неорганическом синтезе как суперокислители. Комплексные соединения платиноидов находят применение для разделения металлов в процессе аффинажа. [c.427]


Смотреть страницы где упоминается термин Палладий комплексные соединения: [c.118]    [c.88]    [c.178]    [c.164]    [c.254]    [c.193]    [c.292]    [c.147]    [c.274]    [c.392]    [c.344]    [c.183]    [c.232]    [c.257]   
Руководство по химическому анализу платиновых металлов и золота (1965) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Палладий

Палладий палладий

Палладий соединения



© 2025 chem21.info Реклама на сайте