Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ртуть комплекс малых количеств

    Тиурамат меди предложен Научно-исследовательским институтом химии Харьковского государственного университета для фотометрического определения малых количеств серебра или ртути [1, 2]. Реактив является медным комплексом Ы,Ы-диметилтиурамдисульфида. Строение комплекса недостаточно выяснено, и по предположению некоторых авторов [3] продуктом взаимодействия диметилтиурамдисульфида с ионами меди является диметилдитиокарбамат меди. [c.89]


    Ртуть можно извлечь из минеральнокислого раствора (1 н.) 2-посредством дитизона при этом она одновременно отделяете от свинца, кадмия, цинка и никеля, которые в этих условиях почти не реагируют с реактивом. С помощью этого реактива можно даже отделить ртуть от меди, если только отношение-Си Hg не слишком неблагоприятно. Это делается дробным извлечением, т. е. встряхиванием анализируемого кислого раствора с небольшими порциями разбавленного раствора дитизон -в хлороформе или четыреххлористом углероде до тех пор, пока окраска вытяжек из оранжевой (окраска дитизоната ртути) не перейдет в красно-фиолетовую [дитизонат меди (П)]. Более простым способом отделения меди от ртути является извлечение--ее в кислой среде, содержащей бромиды или иодиды (в последнем случае добавляют также сернистую кислоту в качестве восстановителя) ртуть при этом не извлекается, а связывается в комплекс . Ртуть затем можно извлечь дитизоном после под-щелачивания раствора (или доведения pH его до 6, если в качестве комплексообразователя применять бромиды). От малых-количеств серебра ртуть можно отделить, экстрагируя сначала [c.408]

    Титрование дитизоном [19, 851, 1140, 1350]. Титрование солей Hg(II) дитизоном используется для определения малых количеств ртути и чаще всего при анализе органических соединений. В кислой среде (при pH 1—4) дитизон образует желто-оранжевый комплекс, а в щелочной среде (при pH 7—14) образует комплекс пурпурного цвета. [c.95]

    Для определения малых количеств мышьяка применяют колориметрический метод, основанный на получении синего мышьяково-молибденового комплекса. Описан [15] чувствительный метод определения мышьяка в сере, основанный на сжигании ее, улавливании мышьяка азотной кислотой, отгонке из кислого раствора АзНз, поглощении его слабым раствором иода и последующем фотометрическом определении в виде синего молибденового комплекса, восстановление до которого проводили Sn b. Позднее [42] в качестве восстановителя был применен гидразин-сульфат, что позволило повысить чувствительность метода до 10 %. Недостатком колориметрического метода является необходимость отделения фосфора во избежание искажения результатов. Для определения мышьяка в сере используется отделение мышьяка в виде арсина и определение последнего по Гутцайту [4]. В большинстве случаев мышьяк определяют улавливанием фильтровальной бумагой, пропитанной раствором хлорида или бромида ртути. Применяя принцип фильтрования газа через горизонтально закрепленные бумажки, в значительной степени удается повысить чувствительность метода. Для повышения чувствительности и точности определения мышьяка в сере с успехом может быть использовано конечное определение арсина в виде окрашенного соединения с диэтилдитиокарбаминатом серебра в пиридиновом растворе [43]. Чувствительность метода 2- 10 доопределение хлора в сере проводят нефелометрически в водной вытяжке, полученной при длительном кипячении серы в бидистилляте [4] или при взбалтывании в течение 2 час. на механической мешалке [44]. Для устранения мешающего действия следов коллоидной и сульфидной (НгЗ) серы проводят окисление [4], либо осаждение в виде Ag2S. Чувствительность метода 5-10- %. Показана возможность применения колориметрического определения хлора методом, основанным на связывании иона хлора двухвалентной ртутью в малодиссоциированное соединение и цветной реакции ртути с дифенилкарбазоном с чувствительностью [c.424]


    Предложен быстрый метод определения малых концентраций этилена и ацетилена с помощью индикаторной колонки. Колонку заполняют силикагелем, пропитанным раствором молибдата аммония и сернокислого палладия. В присутствии этилена желтая окраска индикатора переходит в синюю в присутствии ацетилена в желтовато-зеленую. Предел чувствительности 0,003% [133]. Предложен метод определения малых количеств этилена, состоящий в поглощении этилена раствором перхлората ртути, разрушении образовавшегося этилен-ртутного комплекса соляной кислотой и определении выделившегося этилена манометрическим методом. Точность определения 5%. Метод специфичен для олефинов [134]. [c.141]

    Было показано что малые количества висмута (порядка нескольких тысячных процента) можно определить в присутствии этих металлов отделением дитизоната висмута экстракцией из щелочного цианидного раствора с окончательным определением иодидным методом (см. табл. 47). Предполагается отсутствие большого количества свинца и таллия. Таким образом висмут можно определить в присутствии металлов, дающих устойчивые цианидные комплексы в щелочном растворе (ртуть, серебро, золото, медь), и металлов, не реагирующих с дитизоном (мышьяк, сурьма и железо). [c.301]

    При малых количествах ионов серебра и относительно большом содержании ионов Hg отсутствие осадка или мути не является надежным доказательством отсутствия ионов Ag+ и нуждается в дополнительной проверке. В этом случае ионы серебра, находящиеся в аммиачном растворе в виде диамминового комплекса, восстанавливаются избыточной металлической ртутью или ионами Hgi+ по схемам [c.302]

    Тиурамат меди предложен НИИ химии Харьковского государственного университета для фотоколориметрического определения малых количеств серебра и ртути [1, 2]. Ои представляет собой медный комплекс Н,Ы-диметилтиурамдисуль- [c.77]

    Определение малых количеств Мп(П) кулонометрическим титрованием проводят алектрогенерированным бихроматом калия в 12 Л/ Н3РО4 с амперометрической индикацией конечной точки титрования при потенциале +0,56 в. При этом возможно совместное определение Fe(II), Mn(II), V(IV), e(III) разными методами установления конечной точки титрования при анализе бронз, латуни и стали [312, 313]. В качестве титранта при определении микро-граммовых количеств марганца используют комплексен III. Состав генерируемого электролита — 0,1 М раствор комплексо-ната ртути(П) в ОД М NH4NO3 (pH 8,5) [225]. [c.53]

    Предложен косвенный метод определения ртути, основанный на замеш ении никеля в хлороформных растворах его соли с анти-пирин-4-дитиокарбоксалиевой кислотой ионами Hg(II) и изменении уменьшения поглощения комплекса при 757 нм. Можно определить малые количества Hg(II), но при этом мешающее влияние оказывают Au, Hg , u +, ЗгОГ, ЗОГ, N", ЭДТА [1137]. [c.113]

    Колориметрические методы. Для определения малых количеств ртути в рудах с содержанием 10 —10 % рекомендована методика [122], предложенная Финкельштейном и Петропавловской [367], основанная на колориметрировании ртутно-медного иодидного комплекса uHgJg. [c.145]

    Описанные в литературе методы определения ртути не дают точных результатов определения очень малых количеств ртути. Сюда относятся колориметрические методы, основанные на применении дитизона, дифенилкарбазида, метод Штока, а также метод спектрофотометрического определения ртути по поглощению мер-курициапатного комплекса в ультравполете и др. По мнению В. И. Кузнецова и Е. В. Митрофановой [1], метод титрования ртути йодедами с применением в качестве индикатора йодистого крахмала [2] для определения микрограммовых количеств ртути оказывается также непригодным конечная точка нечеткая и титрования плохо воспроизводятся. Малоудовлетворительные результаты получены этими авторами и при использовании растворов этилендиамин-тетраацетата (трилон В) с индикатором эриохром-черным. [c.114]

    Элементы, хорошо экстрагирующиеся, можно определять и по обесцвечиванию окраски органического слоя. Комацу и Ковано [531] разработали метод спектрофотометрического определения малых количеств ртути, основанный на способности этого элемента вытеснять медь из ее соединения с ДЭДТК. Поглощение диэтилдитиокарбамината меди при 440 ммк уменьшается пропорционально содержанию ртути в водной фазе комплекс ртути в видимой области спектра не поглощает и не мешает фотометрирова-нию. См. также аналогичный метод в работе [532]. Таким же сио-собом оценивали содержание серебра [533, 534]. [c.175]

    Для определения малых количеств мышьяка применяют колориметрический метод, основанный на получении синего мышьяково-молибденового комплекса. Описан [15] чувствительный метод определения мышьяка в сере, основанный на сжигании ее, улавливании мышьяка азотной кислотой, отгонке из кислого раствора АзНз, поглощении его слабым раствором иода и последующем фотометрическом определении в виде синего молибденового комплекса, восстановление до которого проводили Sn b. Позднее [42] в качестве восстановителя был применен гидразин-сульфат, что позволило повысить чувствительность метода до Ю- %- Недостатком колориметрического метода является необходимость отделения фосфора во избежание искажения результатов. Для определения мышьяка в сере используется отделение мышьяка в виде арсина и определение последнего по Гутцайту [4]. В большинстве случаев мышьяк определяют улавливанием фильтровальной бумагой, пропитанной раствором хлорида или бромида ртути. Применяя принцип фильтрования газа через горизонтально закрепленные бумажки, в значительной степени удается повысить чувствительность метода. Для повышения чувствительности и точности определения мышьяка в сере с успехом может быть использовано конечное определение арсина в виде окрашенного соединения с диэтилдитиокарбаминатом серебра в пиридиновом растворе [43]. Чувствительность метода 2 10 %  [c.424]


    Она имеет место при потенциале более отрицательном (или менее положительном), потому что комплекс ртути (И) с ЭДТА труднее восстановить, чем ионы Hg . Сила тока, отвечающая этому второму восстановлению, ограничена диффузией ионов HgY ". Но, поскольку количество образовавщегося комплекса отвечает количеству исчезнувших ионов Нё (в результате соединения их с ЭДТА), и поскольку коэф -фициенты диффузии Hg и HgY мало различаются, суммарная сила тока у катода почти не изменяется. [c.181]

    Растворимость осадков вследствие образования комплекса с избытком осадителя. Ряд осадков характеризуется способностью реагировать с избытком осадителя, образуя растворимые комплексные соединения. Так, например, хорошо известны свойства йодистого висмута или йодной ртути. Эти веш,ества мало растворимы в воде для йодистого висмута растворимость составляет около г-молей в 1 л, для йодной ртути соответственно 2Л0 г-молей в 1 л. Таким образом, растворимость этих осадков близка к растворимости, например, сернокислого свинца. Несмотря на довольно малую растворимость, осадки типа В1Лз или HgJ2 нельзя применять в количественном анализе для отделения соответствующих катионов. Содержание определяемого иона, например Н + или В1 " + заранее (перед анализом), конечно, неизвестно. Поэтому нельзя прибавить точно необходимое количество осадителя, в данном случае ионов йода. При введении же избытка осадителя такие осадки растворяются с образованием комплексных ионов HgJз или В Л .  [c.45]

    Ход определения. К слабокислому исследуемому раствору, содержащему цинк (кадмий), медь, никель и кобальт, прибавляют несколько миллилитров буферного раствора и малыми порциями вводят столько твердого цианида калия, чтобы связать все присутствующие катионы. Требуемое для маскирования количество цианида легко определяют по изменению окраски раствора в присутствии меди раствор обесцвечивается, в присутствии никеля и кобальта — желтеет и при дальнейшем прибавлении цианида цвет раствора не меняется в присутствии ртути образуется сначала ссадок, который затем легко растворяется. Избыток цианида не мешает. После прибавления эриохрома черного Т раствор окрашивается в синий цвет (в присутствии никеля и кобальта — в зеленый). Затем к раствору прибавляют несколько милли . литров 10%-ного раствора формальдегида и тотчас же титруют выделившийся цинк (кадмий) раствором комплексона до перехода окраски из винно-красной в интенсивно-синюю. Согласно опытам автора монографии, вместо формальдегида можно применять также твердый хлоралгидрат. Выделение цинка из цианидного комплекса при этом протекает медленнее титрование тогда проводят через несколько минут после прибавления хлоралгидрата. Преимуществом последнего является возможность его получения в химически чистом виде, а также в отсутствие полимеризации, которая протекает в старых растворах формальдегида. [c.417]

    Большинство из перечисленных металлов, за исключением непереходных цинка, кадмия, ртути и свинца, относятся к й-эле-ментам. Наличие вакансий в электронных оболочках -элементов обуславливает легкость их включения в комплексные соединения, в том числе и с биолигандами. Благодаря этому такие металлы с переменной валентностью, как Си, Со, N1, V, Сг, Мп, Ке, наряду с цинком и молибденом входят в состав простетических групп ферментов и некоторых белков. В составе комплексов с биомолекулами они участвуют в переносе кислорода, алкильных групп и во многих других жизненно важных процессах и реакциях. Однако индивидуальная потребность организмов в тяжелых металлах очень мала, а поступление из внешней среды избыточных количеств этих элементов приводит к различного рода токсическим эффектам. [c.244]

    Сурьма(У) с НВг не образует люшшесцирующих комплексов, однако в растворах НВг с концентрацией > 8,6 М она количественно восстанавливается до ЗЬ(1П). Таким образом, при определении в среде > 8,6 М НВг не имеет значения исходная степень окисления ЗЬ. Вследствие этого рекомендуется люминесцентное определение ЗЬ проводить в среде 8,6 М НВг. Определению ЗЬ при возбуждении люминесценции светом ртутио-кварцевой лампы со светофильтром УФС-4 и регистрации люминесценции при 600—640 нм не мешают 1000-кратные количества О, Ка, К, Mg, Са, Зг, Ва, Ве, 7п, Сс1, А1, Сг, Мп, N1, а также N03, О , РО4, 100-кратные — Т1, РЬ, Те и В1 и 10-кратиые — Ге. На цвет люминесценции оказывает влияние присутствие ряда органических примесей, изменяющих его от красного до белого. Поэтому при определении малых содержаний ЗЬ (1 10 —1 10 %) рекомендуется ее предварительно отделять экстракцией бензолом в виде 8Ь1з. С учетом указанных особенностей влияния посторонних веществ на люминесценцию ЗЬ в замороженных растворах НВг рекомендуется следующая методика [664]. [c.59]

    Исследование сильно облегчается, если образование амминов начинается при достаточно малой концентрации ионов гидроксила, когда гидроксо-соединения образуются лишь в незначительных количествах. В большинстве случаев такое условие выполняется при достаточно высокой концентрации ионов аммония. Если акво-ионы металла имеют явно кислотный характер, необходимо принимать во внимание образование гидроксо-соединений. Для большинства одно- и двухзарядных ионов металлов кислотный характер не имеет большого значения. Однако кислотный характер трехзарядных ионов настолько ярко выражен, что гидроксо-соединения образуются в больших количествах, вследствие чего исследование образования амминов обычно становится невозможным. Кроме того, в отдельных случаях необходимо учитывать образование амидо-комплексов, например в системах аммиачных комплексов ртути и платины. [c.17]

    Гивен и Пивер [67, 68] исследовали анодное окисление ртути в диметилформамиде. В растворе перхлората продуктом реакции является перхлорат ртути(I). Авторы установили, что при использовании перхлората в качестве электрода сравнения не следует использовать ртутное дно, так как в этом растворе потенциал ртути плохо воспроизводится. В присутствии иодида наблюдаются две волны, из которых первая относится к реакции образования HgI В присутствии хлорид-ионов образуется смесь продуктов, содержащая НдС1 . Было показано, что ртутное дно в качестве электрода сравнения можно использовать в концентрированном растворе иодида (фоновый электролит). Предполагают, что при контакте ртути с раствором образуется небольшое количество Пд1 ". Дальнейшее увеличение концентрации ртути(II), происходящее, например, за счет анодной реакции, мало влияет на потенциал, по-видимому, вследствие большой стабильности комплекса. [c.431]

    По избирательности метод мало отличается от меркуриро-даноферратного. Определению хлорид-ионов мешают бромид-, иодид-, роданид-, сульфид-, цианид-, хромат-, тиосульфат-ионы, которые аналогично хлорид-иону разрушают комплекс ртути(11) с дифенилкарбазоном (дифенилкарбазидом). Мешают также ионы Си(П), Со(П), Ре(1П), Ni(II), Сг(П1), Zn(n), d(II), РЬ(П), которые взаимодействуют с реагентами с образованием окрашенных соединений [23, 59, 159, 692]. Однако ионы тяжелых металлов можно предварительно экстрагировать хлороформом. Небольшие количества ионов Си(П) (меньше 0,001%) могут быть замаскированы триэтаноламином. Аммонийные соли влияют при концентрации, превышающей 12 мг л. Мешающее действие аммиака объясняется создаваемой им слабощелочной средой, которая вызывает коагуляцию комплекса ртути с реагентом. Ионы Na(I), Са(П), Mg(H), А1(1П), если их концентрация не превышает 0,1%, не оказывают влияния на окраску исследуемого комплекса. Не мешают также значительные количества ионов 80 , N0 , РО , СНдСОО, С4Н4ОГ [59, 682]. [c.57]

    Другая причина, предостерегающая от переоценки значений растворимостей, вычисленных из произведений растворимости, заключается в том, что определяемый металл может присутствовать в иных, чем простая ионная, формах. Так, например, установлено что растворимость ртути в 1 М хлорной кислоте, насыщенной сероводородом, благодаря образованию НгНёЗг равна 3-10 М (значение, вычисленное из произведения растворимости, равно 10 ). Даже если никакого комплексного сульфида не образуется, несомненно, что в растворе будет присутствовать некоторое количество металла в виде молекулярного сульфида, концентрация которого вполне может превосходить ионную концентрацию, когда последняя очень мала . Применение носителя позволяет преодолеть ограничения, связанные с растворимостью при осаждении ртути. Из 1 л раствора осаждением сероводородом в присутствии меди можно выделить такие количества ртути, как 0,02 у Иногда слаборастворимые металлоорганические комплексы используют для осаждения следОв других металлов, образующих нерастворимые соединения с тем же самым реагентом. Следы циркония, ванадия и титана, встречающиеся в минеральных водах, можно количе-ственно выделить с осадком купферроната железа, образующегося при добавлении купферрона 8-Оксихинолин также был использован для осаждения следов различных металлов с хинолятами железа или алюминия в качестве носителей. [c.33]

    В ходе анализа, описанном ниже, применяют двойную экстракцию диэтилтнокарбаматом диэтиламмония для отделения олова от сравнительно небольших количеств основных элементов, мешающих определению. При первой экстракции от олова (IV) отделяют медь, висмут, ртуть, мышьяк(1П) и сурьму(П1) при второй экстракции отделяют олово(П) от металлов, оставшихся после первой экстракции. Из 59 опробованных элементов, находившихся в количестве 0,5 мг после двойной экстракции оставался только молибден. Количество молибдена, сопутствуюш,его олову, настолько мало, что его вредное влияние при конечном определении олова можно предотвратить связыванием в комплекс с перекисью водорода. Когда количество посторонних металлов превосходит величину порядка 1 мг, могут оказаться необходимыми дополнительные операции отделения, например сероводородом или купферроном, в отношении которых следует обратиться к оригинальным работам. [c.775]


Смотреть страницы где упоминается термин Ртуть комплекс малых количеств: [c.67]    [c.125]    [c.342]    [c.295]    [c.111]    [c.62]    [c.99]    [c.409]    [c.170]    [c.117]    [c.289]   
Комплексоны в химическом анализе (1960) -- [ c.542 ]




ПОИСК





Смотрите так же термины и статьи:

Ртуть комплексы



© 2025 chem21.info Реклама на сайте