Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоновые кислоты ионизация

    Как влияет делокализация электронов на строение карбоксильного иона Где находится отрицательный заряд после ионизации карбоновой кислоты  [c.341]

    Другая не менее. ценная характеристика влияния заместителей— константы ионизации ароматических аминов, фенолов, карбоновых кислот и других соединений. Ниже приведены константы ионизации р/(а некоторых аминов и фенолов [c.45]


    В методе спектроскопии ЯКР, как и в других физических методах исследования, химики всегда стараются провести корреляцию получаемых данных с химической информацией и данными других методов. Данные ЯКР сопоставляются, в частности, с данными ЯМР, мессбауэровскими и ИК спектрами и т. д. Найдены полезные корреляции частот ЯКР некоторых изотопов с константами ионизации рКа карбоновых кислот, ст-параметрами Гаммета и Тафта, индексами реакционной способности и др. [c.109]

    Поскольку самые подробные точные данные имелись для замещенных карбоновых кислот П, значения констант ионизации замещенных бензойных кислот были положены в основу всех корреляций реакционной способности соединений бензольного ряда. [c.166]

    Положительные величины а указывают на электроноакцепторные группы, а отрицательные — на электронодонорные. Константа р служит мерой восприимчивости реакции к электронным эффектам. Протеканию реакций с положительным значением р способствуют электроноакцепторные заместители, и наоборот. Следующие примеры величин р для ионизации некоторых карбоновых кислот [27 [c.368]

    К неионогенным поверхностно-активным веществам относятся мыла с молекулами, не способными к ионизации. Они обычно содержат длинные углеводородные цепочки с несколькими полярными, но неионогенными группами, обусловливающими растворимость этих мыл. Наибольшее значение имеют неионогенные вещества, полученные при обработке окисью этилена спиртов, фенолов или карбоновых кислот по схеме [c.156]

    Ионизация карбоновых кислот. Константа кислотности [c.566]

    Наиболее характерной реакцией карбоновой кислоты является ее ионизация  [c.144]

    Для каждой карбоновой кислоты характерно свое значение Ка, указывающее силу этой кислоты. Поскольку константа кислотности выражает отношение концентраций ионизованной и неионизованной форм вещества, то большее значение Ка соответствует большей степени ионизации (в данных условиях) и более сильной кислоте. Поэтому значения Ка используют как точную меру для сравнения силы различных кислот. [c.566]

    Во-первых, смещение электронов двойной связи карбонильной группы к атому кислорода приводит к образованию частичного положительного заряда на атоме углерода, что вызывает индуктивный сдвиг электронной плотности от атома водорода в связях С—ОН и О—Н. Вследствие этого водородный атом легко можно удалить из молекулы под действием основания. Действительно, ионизация карбоновых кислот становится ощутимой только в присутствии подходящего акцептора протонов (например, Н2О) и вообще может не приниматься в [c.144]


    В неполярной среде (бензол) каталитический эффект добавок карбоновых кислот на реакцию ангидридов с гидропероксидами подавляется [43,44] вследствие слабой ионизации карбоновой кислоты. Влияние [c.301]

    Определение кислотного числа фенолоформальдегидных полимеров выполняют, как описано в гл. 1, разд. Определение карбоксильных групп . В качестве растворителя применяют спиртобензольную смесь. Титрование проводят в присутствии хлорида натрия, препятствующего ионизации фенолятов, которые вели бы себя как карбоновые кислоты. [c.222]

    Многие из перечисленных реакций являются необратимыми и к ним не применим классический термодинамический подход. Однако такие важнейшие типы химических реакций, как протонирование и депротонирование (кислотная ионизация), этерификация карбоновых кислот, гидролиз сложных эфиров, водородный обмен, сульфирование, кето-енольная таутомерия являются обратимыми. Рассмотрим основные типы обратимых реакций органических соединений. [c.134]

Рис. 11.3. Сопоставление констант ионизации карбоновых кислот Рис. 11.3. Сопоставление <a href="/info/633176">констант ионизации карбоновых</a> кислот
    Из этих реакций наибольшее значение имеет ионизация 4-Х-бицикло[2,2,2]октан-1-карбоновых кислот (17) [c.485]

    Ниже приведены константы ионизации некоторых карбоновых кислот в водных растворах в единицах р Га ( Н2О, 25 С) [c.544]

    На первой стадии этих реакций молекула карбоновой кислоты подвергается ионизации. [c.220]

    Разработаны высокоэффективные методы синтеза новых 2-амино-5-замещенных 1,3,4-тиадиазолов на основе арилтио-, арилсульфонилуксусных и пропионовых кислот, определены спектрофотометрическим методом их константы ионизации. Экспериментально установлено, что в растворах 2-амино-1,3,4-тиадиазолы на основе сульфонил-пропионовых кислот имеют место неизученные до сих пор взаимодействия с гидроксильными i pynnaMH щелочей, спиртов и воды. Изучены реакции ацилирования 2-амино-5-замещенных 1,3,4-тиадиазолов хлорангидридами сульфо- и карбоновых кислот. Продолжено изучение синтетических возможностей бифункциональных ангидридов замещенных сульфокарбоновых кислот. Использование различной реакционной способности хлорангидридной и сульфохлоридной группы в реакциях ацилирования гетероциклических аминов и аминов, содержащих такие функциональные группы, как -СООН, -ОН, и др. открывает путь к новым сложнозамещенным производным сульфоновых кислот. [c.51]

    В том же направлении увеличивается устойчивость карбоксилат-иона, образующегося при ионизации карбоновой кислоты. [c.285]

    Реакции карбоксильной группы. Для гидрокснккслот характерны обычные реакции карбоновых кислот ионизация карбоксильной группы, образование солей, сложных эфиров, амидов, ацилхлоридов. Отчасти осуществлению этих реакций мешает npn yi-ствие гидроксильной группы, которая тоже может вступать в реакции. Поэтому ее обычно защищают , превращая в простую или сложноэфирную группировку  [c.610]

    В качестве примера рассмотрим три варианта анализа карбоновых кислот. Высокополярные и гидрофильные кислоты слишком прочно удерживаются силикагелем, но не удерживаются алкилсиликагелями в обычном обращенно-фазовом режиме. Поэтому для них предпочтителен ион-парный вариант обращенно-фазовой хроматографии. Кислоты умеренной полярности вполне поддаются разделению на силикагеле, однако для улучшения формы пиков к подвижной фазе желательно добавить около 1 % уксусной кислоты. Третий вариант, пригодный для анализа больщинства кислот, кроме наиболее гидрофильных, предусматривает использование алкилсиликагеля в качестве неподвижной фазы. С целью подавления ионизации в составе подвижной фазы применяют буферные растворы с pH 2—5. [c.273]

    В классических синтетических реакциях этого круга разделение ролей достигалось одним приемом использованием резко различных по способности к ионизации субстратол. Именно этим определяется индивидуальное лин,о названных выше именных реакций, т. е. области их применения и характерные типы субстратов. Скажем, в реакции Иеркина — конденсации ароматических альдегидов с ангидридами алифатических карбоновых кислот — игра построена па том, что в электрофильной компоненте — альдегиде — не содержится а-водородных атомов, что лнншет его возможности образовывать еноляты. В результате реакция проходит однозначно и приводит к продуктам тииа эфиров коричной кислоты, например  [c.87]

    В таких условиях можно количественно определять не только фенолы, но и карбоновые кислоты, аминокислоты, сульфаниламидные препараты, барбитураты, производные тиоурацила, 4-ок-сикумарина и др. Выбор растворителя и титранта зависит от степени ионизации титруемого объекта. Более сильные кислоты (бар-битал, фенобарбитал, фталазол) по ГФ титруют в среде диметил-формамида раствором гидроксида натрия, а вещества со слабо выраженными кислотными свойствами (фенолы) — раствором метилата натрия [5, 30]. [c.143]


    Выше были рассмотрены масс-спектры углеводородов, их кремниевых производных н спиртов. В настоящем разделе обобщены данные, характеризующие влияние функциональных групп па направление диссоциативной ионизации. Для многих типов производных углеводородов соблюдается правило, согласно которому интенсивность пика молекулярных ионов данного гомологического ряда падает с увеличением молекулярного веса. Некоторые аномалии наблюдаются в ряду алифатических кислот, в масс-спектрах которых интенсивность пиков молекулярных ионов по отношению к интенсивности максимального пика увеличивается при переходе от валериановой к стеариновой кислоте и только потом падает с удлинением алкильной цепи. Присутствие ароматического ядра сильно увеличивает интенсивность пиков молекулярных ионов ароматических карбоновых кислот, сложных эфиров, аминов, галоидов и других соединений. [c.110]

    Снлы притяжения, возникающие между этими соединениями (особенно нитрилоэфирами) и неполярными и насыщенными органическими соединениями, невелики, тогда как с полярными и ненасыщенными веществами, которые могут образовывать водородные связи, возникает сильное притягивающее взаимодействие. Последнее объясняется тем, что нитрилы при наличии в них цианогрупп сами сильно полярны (дипольный момент алкилциани-дов составляет (х = 3,60 /), а фенилцианида [х = 4,05 О) и легко поляризуются, в связи с чем может проявляться действие ориентационных сил. В то же время нитрилы, будучи полярным , индуцируют в ненасыщенных, поляризуемых молекулах электрическое поле, в результате чего возникает некоторое притяжение и к этим молекулам. Но еще сильнее проявляются силы донорно-акцепторного типа, и это прежде всего водородные связи. Донорно-акцепторные силы возникают вследствие того, что нитрилы благодаря электроотрицательности групп N действуют как акцепторы электронов и больше задерживают в колонке вещества, обладающие системой я-электронов с низкой энергией ионизации (ароматические вещества) (ср. разд. В.1). Образование водородных мостиков происходит между нитрилоэфирами, с одной стороны, и спиртами, фенолами, карбоновыми кислотами (т. е. соединениями, содержащими группы ОН) и первичными (в меньшей степени также вторичными) аминами — с другой. Как уже было указано выше (см. разд. В), удельные объемы удерживания пропанола при применении , 2,2>-трис-(цианэтокси)пропана и менее полярного диоктилсебацината почти одинаковы, так как в обоих случаях водородные связи с этими веществами приводят к взаимодействиям с большей энергией по сравнению с другими типами взаимодействий. [c.207]

    Кроме того, ситуация осложняется тем обстоятельством, чгоА5°для ионизации карбоновых кислот в воде [c.64]

Рис. 11.10. Корреляцня констант ионизации 4-замещенных бицик-ло[2,2,2]октан-1-карбоновых кислот с индукционными константами о .[Точка, соответствующая заместителю С0.0 также укла-""дывается на прямую (на рисунке не показана) [69]. Рис. 11.10. Корреляцня <a href="/info/36392">констант ионизации</a> 4-замещенных бицик-ло[2,2,2]октан-1-<a href="/info/1050">карбоновых кислот</a> с <a href="/info/318723">индукционными константами</a> о .[Точка, соответствующая заместителю С0.0 также укла-""дывается на прямую (на рисунке не показана) [69].
    Зигель и Комарми [78] установили, что величины й(К/Ко) для ионизации жестких /пр<2НС-4-Х-циклогек-санкарбоновых кислот пропорциональны соответствующим величинам для ионизации бициклооктанкарбоновых кислот Робертса и Мореленда (17). Если проводить прямую по точкам для четырех заместителей, общих в обеих сериях, допуская, что влияние хлора и брома идентично, то Б 50%-ном (по объему) этаноле коэффициент пропорциональности равен 0,78 со стандартным отклонением 0,021. Имеется пропорциональная зависимость между величинами lg(/ // o) для ионизации циклогексаи карбоновых кислот в воде и водном метаноле с наклоном 0,64 и стандартным отклонением 0,017. Отсюда можно найти, что в водном растворе для атома брома как заместителя в би-циклооктанкарбоновой кислоте ]g(K/Ko) = 0,49. Эта величина совпадает с индукционным влиянием атома брома в Л1- и -положениях бензольного ядра на константу ионизации бензойной кислоты в воде (табл. 11.4). [c.495]

    Влияние заместителей в циклогексанкарбоновых кислотах на 22% слабее, чем в бициклооктанкарбоновых, а в последних в среднем на 7% слабее, чем в бициклооктен-карбоновых кислотах (18)[79]. Корреляция констант ионизации бициклооктан- и 4-Х-дибензобицикло[2,2,2]ок-та-2,5-диен-1-карбоновых кислот не очень хорошая, но в среднем наклон равен 0,75 [791. [c.495]

    Для ионизации м- и п-замещенных бензойных кислот в воде стандартное отклоьение от среднего значения Л/Р равно 0,11 ккал (не включались метильные производные) отклонения, по-видимому, распределены случайным образом. Однако для м- и п-толуиловой кислот АН° на 1,1 и 1,0 ккал соответственно больше среднего значен ия для других замещенных бензойных кислот [91. В случае алифатических карбоновых кислот наблюдалась совершенно иная картина зависимости АН от AS ([3], стр. 372). [c.508]

    Кислотность и основность. Карбоновые кислоты обладают кислыми свойствами, что и отражено в названии. В растворах происходит ионизация с образованием сольватировапиого протона и аниона — карбоксилат-иона  [c.543]

    Так, например, в процессе щелочного гидролиза сложных эфиров нуклеофильная атака иона ОНЭ на карбонильную группу приводит к образованию структуры I, дальнейшие превращения которой могут протекать по двум направлениям. Согласно схеме б, это превращение сопровождается отщеплением гидроксила, что эквивалентно простому разложению. Согласное, наоборот, отщепляетсяалкок-сигруппа и образуется свободная карбоновая кислота (II). Хотя алкокси-ион является более основным, чем ион ОНЭ, реакция нап-, равляется по пути в, поскольку равновесие постоянно сдвигается вследствие того, что сильное основание К—0 связывает протоны, возникающие в результате диссоциации кислоты II, или отним а-ет протоны от среды. Реакции переэтерификации происходят по аналогичной схеме. Течение их всегда полностью обратимо, замещение одной алкоксильной группы на другую приводит к образованию сложного эфира, не способного к ионизации. [c.190]

    То молекул, то отличия В всличине этой энергии для разнык кислот не сказываются на изменении их относительной силы. Различие в энергии взаимодействия растворителя с молекулами кислот разной природы, как мы уже видели, связано с индивидуальными особенностями во взаимодействии полярной части молекул с дипольными молекулами растворителей. Различие во влиянии растворителя на изменение энергии ионов объясняется особенностями их структуры и отличием энергии их взаимодействия с дипольными молекулами растворителей. Например, различие в энергии взаимодейстЕия ионов карбоновых кислот и фенолов объясняется тем, что карбоновые кислоты при ионизации изменяют свою структу ру так  [c.641]

    Энергии взаимодействия молекул растворителя с неполярным радикалом молекулы кислоты и иона, образованного из этой молекулы, близки между собой, а так как изменение силы кислот определяется величиной (21 Тоионов— ёТомолекул) ОТЛИЧИЯ В величине этой энергии для кислот не сказываются на изменении их относительной силы. Энергии взаимодействия растворителя с молекулами кислот разной природы определяются индивидуальными особенностями во взаимодействии полярной части молекул с дипольными молекулами растворителей. Влияние растворителя на изменение энергии ионов объясняется особенностями их структуры и отличием энергии их взаимодействия с дипольными молекулами растворителей. Например, различие в энергии взаимодействия ионов карбоновых кислот и фенолов объясняется тем, что карбоновые кислоты при ионизации изменяют свою структуру  [c.384]


Смотреть страницы где упоминается термин Карбоновые кислоты ионизация: [c.387]    [c.387]    [c.96]    [c.339]    [c.336]    [c.166]    [c.171]    [c.1455]    [c.9]    [c.35]    [c.144]    [c.305]    [c.62]    [c.49]   
Органическая химия Том 1 перевод с английского (1966) -- [ c.421 ]

Основные начала органической химии Том 1 Издание 6 (1954) -- [ c.481 ]




ПОИСК





Смотрите так же термины и статьи:

Двухосновные карбоновые кислоты константы ионизации

Ионизация карбоновых кислот. Константа кислотности

Ионизация кислот

Карбоновые кислоты жирного ряд степень ионизации

Карбоновые кислоты ионизация в концентрированной серной кислоте

Карбоновые кислоты константы ионизации

Карбоновые органические кислоты ионизация



© 2025 chem21.info Реклама на сайте