Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ассоциация молекул карбоновых кислот

    Следует отметить, что карбоновые кислоты по сравнению, например, со спиртами (с тем же числом углеродных атомов) имеют довольно высокие температуры кипения и плавления. Это можно объяснить значительной ассоциацией молекул кислот за счет более прочных, чем в спиртах, водородных связей (связь О—Н в кислотах более поляризована), которые образуются при взаимодействии [c.142]


    Водородная связь возникает между молекулами органических соединений, содержащих группы —ОН и —NH2. Примерами могут служить спирты и карбоновые кислоты. Ассоциация молекул за счет водородных связей приводит к тому, что спирты н карбоновые кислоты имеют более высокие температуры кипения, чем соответствующие им альдегиды, между молекулами которых водородные связи не образуются. Наличием водородных связей объясняется образование димеров муравьиной и уксусной кислот в парах [c.130]

    Для карбоновых кислот более характерна ассоциация по циклическому димерному типу. Пребывание молекул карбоновых кислот в состоянии ассоциа- [c.143]

    Для соединений фтора и кислорода характерно образование за счет водородной связи группировок из одинаковых молекул — ассоциаций (НаО) и (HF)m. Это сказывается на целом ряде свойств соединений и, в частности, на таких параметрах, как температуры кипения и замерзания. По относительной величине молекулярных масс НаО и H S для воды и /3 должны быть ниже, чем для сульфида водорода (—60,75 и —85,60 °С). В действительности они много выше (100 и О °С), что связано с увеличением молекулярной массы воды за счет ассоциаций ее молекул. Карбоновые кислоты в жидкой и газовой фазах существуют в основном в виде димеров. В белках, нуклеиновых кислотах и других органических соединениях, имеющих большое биологическое значение, водородная связь обеспечивает поперечное сшивание цепочечных молекул. Для некоторых соединений возможно также образование внутримолекулярной водородной связи, например в нитрофеноле. [c.122]

Рис. 3.11. Ассоциация двух молекул карбоновой кислоты. Рис. 3.11. Ассоциация <a href="/info/1696521">двух</a> молекул карбоновой кислоты.
    Пребывание молекул карбоновых кислот в состоянии ассоциации, причем попарной, доказано определением их молекулярной массы, которая оказалась удвоенной. [c.136]

    Из величины диэлектрической поляризации метилового, этилового, изопропилового и третичного бутилового спиртов в чрезвычайно разбавленном бензольном растворе рассчитан дипольный момент 1,66, примерно равный ожидаемому для единичной молекулы (СНдОН 1,62 [70]). Таким образом, наблюдается совпадение с криоскопическими определениями, которые были проведены в 5 10 — 5 10 М растворах при таком разбавлении уже нет ассоциации. Напротив, карбоновые кислоты при таких концентрациях еще сильно ассоциированы [72]. [c.233]


    Водородная связь объясняет аномально высокие температуры кипения и плавления ряда веществ, аномальную диэлектрическую проницаемость и не соответствующую строению молекул растворимость. Так, способность спиртов, аминов, карбоновых кислот растворяться в значительной степени обусловлена наличием водородной связи. Эта же связь приводит к ассоциации молекул. На , пример, при ассоциации молекул спирта образуются димеры, три-меры и т. д.  [c.45]

    Водородная связь между атомами А и В двух различных молекул — межмолекулярная водородная связь — приводит к ассоциации молекул, проявляется в аномально высоких температурах кипения, плавления и других свойствах образовавшихся веществ. Из примеров таких соединений приведем схемы (НгО)п, (НР) , (К Н.ч)п, карбоновых кислот и спиртов  [c.127]

    К нему относится имеющая большое значение водородная связь. Эта связь осуществляется, в частности, при ассоциации карбоновых кислот. На рис. XVI.5 показана структура комплекса двух муравьиных кислот (НСООН)2. Атомы водорода, находящиеся между двумя атомами кислорода, осуществляют связь с чужим кислородом с энергией 14 ккал (58,8 кДж). Подобные связи атом водорода может давать также с азотом и галоидами. Водородная связь, например, определяет устойчивость комплексов фтористого водорода. Для разрушения комплекса (HF)e на шесть молекул НР требуется затратить 40 ккал/моль (168 кДж/моль), т. е. 6,7 ккал (28,1 кДж) на одну водородную связь. Водородная связь определяет структуру и прочность многих твердых тел. [c.341]

    Из физической химии известно, что водородная связь характерна для соединений, содержащих атомы кислорода, фтора и в меньшей степени азота Она проявляется тем сильней, чем больше электроотрицательность атомов-партнера и чем меньше его размеры, т.е. молекулярная масса. Электроннографическими исследованиями установлено, что благодаря водородным связям молекулы могут объединяться в димеры и даже полимеры. Способностью к ассоциации отличаются вода, спирты, карбоновые кислоты, фтороводород, аммиак и многие другие. Ассоциация приводит к повышению температур [c.64]

    В табл. 1.12 приведены значения Гг и для основных структурных элементов, имеющихся в данных полимерах. Как оказалось, вклад в Тс групп СН(ОН) зависит от строения молекулы сшивающего агента, поскольку может меняться степень ассоциации гидроксильных групп водородными связями. Аналогичная зависимость наблюдается и в случае гидроксилсодержащих циклогексильных групп, образующихся при отверждении алициклических соединений карбоновыми кислотами. [c.29]

    Относительное постоянство энтропии испарения при переходе от одной жидкости к другой легко понять с точки зрения гипотезы Больцмана о связи энтропии с неупорядоченностью. Превращение жидкости в пар приводит к увеличению неупорядоченности. При критической температуре энтропия испарения равна нулю, потому что жидкость и газ при этой температуре неразличимы и энтальпия испарения равна нулю. Больщинство жидкостей ведет себя одинаково не только при своих критических температурах, но и при температурах, составляющих равные доли критических температур мы уже видели (разд. 3.3), что стандартные точки кипения многих жидкостей составляют примерно равные доли их критических температур. Следовательно, разные жидкости будут иметь приблизительно одинаковую энтропию испарения в точке кипения при условии, что в процессе испарения не происходит ассоциации или диссоциации молекул. Для соединений,подобных воде и спиртам, которые образуют водородные связи (разд. 14.8), энтропия испарения больше 21 кал/(К-моль). Для водорода и гелия, которые кипят лишь немного выше абсолютного нуля, вполне можно ожидать значительных отклонений от этого правила. Уксусная и карбоновые кислоты вообще имеют аномально низкие теплоты испарения, так как их пар содержит димерные молекулы. Для диссоциации димеров в паре на отдельные молекулы необходимо затратить дополнительное количество энергии. [c.100]

    Из распространенных органических растворителей сильно ассоциируют в паровой фазе карбоновые кислоты и их замещенные, причем значительная ассоциация молекул кислот происходит в широком интервале температур и давлений, включая область весьма низких давлений. Метод учета неидеальности сильно ассоциированного пара принципиально отличается от описанного выше метода, использующего вириальное уравнение состояния .  [c.189]

    Карбоновые кислоты, как и все гидроксильные соединения, — ассоциированные жидкости и лишь в парах и водных растворах мономерны. Однако, в отличие от спиртов, их ассоциация носит строго регулярный характер — они образуют димеры, в которых две молекулы кислоты связаны между собой водородными связями, причем протоны водородной связи находятся на разных расстояниях от своего (1 А) и чужого кислорода (1,7 А). [c.165]


    Оба обнаруженных эффекта — влияние природы и состава растворителя и влияние длины углеродной цепочки аниона в соли катализатора, можно объяснить различием в степени сольватации как активированного колшлекса, так и молекул катализатора в растворе. Это влияние понижается с увеличением длины углеродной цепочки карбоновых кислот, что должно сопровождаться повышением скорости каталитического разложения гидроперекиси кумола. Соответственно изменяется и величина кажущейся энергии активации. Кроме того, здесь также могут сказаться и различия в степени ассоциации солей жирных кислот в растворе [8]. [c.235]

    Температура плавления вещества растет с увеличением степени ассоциации молекул. Так, сложные эфиры, неспособные к образованию мости-ковой водородной связи, плавятся при значительно более низких температурах, чем соответствующие карбоновые кислоты. [c.86]

    Н. А. Измайлов не только высказал это вполне вероятное предположение, но детальными исследованиями доказал существование продуктов ассоциации молекул кислоты и растворителя, определил их состав и измерил константы нестойкости. Для этого было предложено использовать криоскопические измерения [27]. Способ обработки результатов измерений позволяет надежно обнаруживать даже слабое взаимодействие с растворителем. Найдено, например, что карбоновые кислоты и фенолы, взаимодействуя с эквимолекулярным количеством ацетона, дают соединения, которым приписывается строение  [c.259]

    Водородная связь ответственна за аномалии физических (температура кипения аномально высока, инфракрасный спектр поглощения изменен и т. п.) и химических свойств гидроксилсодержащих веществ. Она же обусловливает ассоциацию молекул, наблюдаемую для некоторых соединений, особенно для карбоновых кислот  [c.17]

    Молекулярная ассоциация большей частью изучалась в жидкостях и растворах, в которых, как это можно предполагать, межмолекулярные водородные связи непрерывно разрываются и вновь возникают, не обладая постоянным стереохимическим расположением. В кристаллах же между молекулами способны образовываться постоянно направленные водородные связи, имеющие решающее значение для типа упаковки молекул в кристалле. Здесь возможны широкие вариации—от кристаллов, состоящих из спаренных молекул (как в карбоновых кислотах), до наиболее часто встречающихся бесконечных двух- и трехмерных молекулярных комплексов. [c.220]

    Карбоновые кислоты образуют межмолекулярные водородные связи за счет карбонильного кислорода одной молекулы кислоты и водородного атома гидроксильной группы другой молекулы. Подобная ассоциация может быть циклической или линейной  [c.159]

    Наличие водородных связей оказывает существенное влияние на физические свойства соединений. Именно водородные связи обусловливают ассоциацию воды и спиртов, а следовательно, и аномально высокие точки их кипения сравнительно, например, с сероводородом и меркаптанами. Способность спиртов, аминов, карбоновых кислот, амидов растворяться в воде обусловлена образованием водородных связей с молекулами воды. [c.114]

    Особое поведение некоторых гидроксилсодержащих соединений (спиртов, кислот и т. д.) объясняется образованием водородной связи. Для таких веществ характерны более высокие температуры кипения и плавления, наблюдается изменение растворимости и электрической проводимости и т. д. Например, водородная связь обусловливает ассоциацию молекул в случае карбоновых кислот (см. гл. 1П, 20). [c.21]

    Впрочем, карбоновые кислоты, образующие как в парообразном состоянии, так и в растворах насыщенные димерные формы, представляют довольно редкий случай. Кроме них, до сих пор, кажется, только для оксимов [ 107] установлено, что ассоциация в растворе, возникшая за счет водородной связи, в основном не выходит за пределы двойного молекулярного веса. Напротив, фенолы, спирты, амиды кислот и анилиды, ассоциирующие с помощью водородных мостиков, образуют при больших концентрациях в ненарУшающих ассоциации растворителях ассоциаты, состоящие чаще всего более чем из ДВУХ молекул. Эти ассоциаты, как и ассоциаты карбоновых кислот, разрушаются при действии растворителя (например, эфира, диоксана и пиридина), содержащего атомы азота или кислорода, способные к образованию водородной связи. Это явление нарушения ассоциации указывает, что образование водородной связи может происходить также и между молекулами различных веществ, между различными функциональными i руппамь (см. об этом далее, стр. 252). Впрочем, последнее наблюдается и у димерных молекул карбоновых кислот. [c.242]

    Карбоновые кислоты сильно ассоциированы и даже при температурах, выше их температуры кипеция, показывают вдвое больший молекулярный вес, чем это следует из их простой молекулярной формулы. Эта ассоциация обусловлена, как и у воды и спиртов, наличием ОН-группы, водородный атом которой вступает в связь с атомом кислорода другой молекулы кислоты ( водородные мостики , водородная связь, стр. 114). [c.243]

    Карбоновые кислоты относятся к слабоионизированным средам. Вследствие их низкой диэлектрической проницаемости растворенные в карбоновых кислотах сильные минеральные кислоты и соли находятся в основном в виде ионных пар с низкими константами диссоциации. Поскольку индикаторные основания Гаммета протонируются и протонами, входящими в состав ионных пар, и протонами, находящимися в растворе отдельно, линейную зависимость IgA от Hq раствора следует трактовать как зависимость константы скорости реакции от суммарной прото-нодонорной способности среды. Изменение Яд в изученных растворах достигалось при изменении и концентрации минеральных кислот, и концентрации воды при этом все данные зависимости gk2 от Hq описывались общей прямой линией. Это позволяет сделать вывод, что катализ осуществляется протонированиём одного из реагентов, а не в результате ассоциации его с молекулой катализатора. [c.303]

    В растворителях, не способных к образованию водородной связи (например, бензол, СС14), карбоновые кислоты также имеют меньший удерживаемый объем, чем углеводороды, но за счет ассоциации с образованием димерных молекул. [c.58]

    Сольватация всегда сопровождается изменением степени упорядоченности молекул растворителя, поэтому при рассмотрении сольватации необходимо учитывать не только энтальпийный, но и энтропийный фактор. В неполярных и малополярных растворителях молекулы мапо упорядочены — как в чистых растворителях, так и в растворах. Сольватационные энтропийные эффекты для таких растворителей обычно невелики. Напротив, дпя полярных растворителей, молекулы которых способны к ассоциации за счет образования водородных связей (вода, спирты, карбоновые кислоты), степень упоря- [c.98]

    Если соседние с гидроксильной группой объемные заместители препятствук межмолекулярной ассоциации, то полоса валентного колебания связи 0-Н может быть очень узкой. Этот вывод справедлив и по отношению к спектрам других молекул с внутримолекулярной водородной связью, поскольку Энергия водородной связи в большей или меньшей мере определяется внутренней структурой сшой молекулы, а концентрация изучаемого вещества не оказывает существенного влияния на характер спектра. Очень прочны также некоторые димеры. Например, алифатические карбоновые кислоты существуют практически только в виде димеров, поэтому даже [c.59]

    Ассоциация молекул и образование водородных связей. Поскольку атомы водорода ведут себя так, как будто обладают избыточным зарядом, молекулы полярных веществ стремятся к образованию ассоциаций за счет так называемых водородных связей. Тенденция к образованию таких ассоциаций снижается по мере уменьшения электроотрицательности составляющих атомов. Ионы фтора обладают наиболее сильным отрицательным зарядом, поэтому, например, фтороводо-род образует прочные ассоциативные связи как в жидкой, так и в паровой фазах. Формула газообразного фтороводорода при нормальных условиях (НР)б. Пары уксусной и муравьиной кислот при температуре, немного превышающей их точку кипения при атмосферном давлении, бимолекулярны. Степень ассоциации молекул можно определить спектроскопически. Константы химического равновесия для димеризации установлены однозначно. Данные о них представлены в задаче 1.11. Наиболее ярко тенденция к димеризации проявляется у карбоновых кислот в то же время спирты, эфиры, альдегиды и другие вещества при нормальных давлении и температуре также стремятся к ассоциации в значительной степени. Снижение этой тенденции наблюдается при уменьшении давления и концентрации, а также при повышении температуры. Классификация молекул, которые стремятся к ассоциации путем образования водородных связей, выполнена Эвеллом и др. [278]. [c.35]

    Другой тип комплекса в органической фазе образуется при взаимодействии карбоксилатов металла с недиссоциированной, мономерной или димерной карбоновой кислотой, что приводит к образованию соединения MX j (НХ) , в котором сумма т — п не обязательно равна координационному числу металла (здесь X — органический остаток). В настоящее время еще недостаточно экспериментальных данны , чтобы определить факторы, влияющие на образование таких комплексов [80. 83—88]. Наиболее вероятными факторами являются энергия гидратации металла, степень межмолекулярного взаимодействия молекул экстрагента через водородные связи и сте-рпческая характеристика. Оба типа соединений в органической фазе способны к ассоциации [83, 84, 89]. [c.33]

    Растворители, молекулы которых содержат атомы водорода, способные образовывать водородные связи, и одновременно атомы с неподеленными парами электронов, обладают ионизирующими свойствами. Это объясняется тем, что они могут стабилизировать как анионы или анионоподобные частицы (в результате образования водородных связей), так и катионы или частицы с нехваткой электронов (в результате ассоциации за счет неподеленных пар электронов). К таким растворителям относятся вода, спирты, карбоновые кислоты, аммиак. В реакциях нуклеофильного замещения они сольватируют и таким образом стабилизируют как катионы, так и анионы и, следовательно, способствуют протеканию замещения по 5 1-механизму. [c.133]

    Некоторые из методов, описанных ниже, были разработаны Бьеррумом [6] и Крейцером [36] для исследования равновесий в газовой фазе. При исследований ассоциации в растворах форма В обычно является незаряженной органической молекулой, которая способна к образованию межмолекулярной водородной связи, но настоящая обработка результатов в равной мере применима, например, к образованию ионных мицелл или к димеризации свободных радикалов. При других условиях центральная группа может сама по себе диссоциировать. Например, в органических растворителях карбоновые кислоты можно рассматривать как недиссоциированную группу В, но в водном растворе они заметно диссоциируют как протонный комплекс HjA. Более сложные полиядерные формы В,Ар(р>0), которые содержат как центральную группу, так и лиганд, рассматриваются в гл. 17. Смешанные комплексы ВдАрЗ ,, которые являются полиядерными по отношению к В и содержат два типа лигандов, обсуждаются в гл. 18. [c.391]

    При определении количественного и качественного состава кислородсодержащих соединений широко применяется инфракрасная спектроскопия благодаря наличию характеристических полос кислородных функциональных групп 3400—3600 см — валентные колебания атомов водорода гидроксильных групп кислот и фенолов, 1650—1740 см —валентные колебания карбонильной группы кислот, кетонов, сложных эфиров (лактонов), ангидридов кислот, амидов. Показано [49], что с помощью специфических химических реакций возможно провести идентификацию полос поглощения карбонильных групп различных классов соединений. Так, обработка карбоновых кислот бикарбонатом натрия приводит к образованию карбоксилатанионов, для которых характерно поглощение в области 1580—1610 см . Дальнейшая обработка образца гидроксидом натрия при нагревании вызывает омыление сложных эфиров, лактонов, ангидридов и образование карбоксилатанионов. В результате в области 1650— 1740 СМ наблюдается только поглощение кетонов. Пользуясь групповыми интегральными коэффициентами поглощения (для карбоновых кислот 1,24-10 л/(моль-см), сложных эфиров 1,15 10 кетонов 0,72-10 л/(моль-см) [50], можно определить концентрацию соединений каждого типа. Применение методов ИК-спектроскопии в исследованиях состава нефтей 51] позволило обнаружить и количественно оценить наличие карбоновых кислот, фенолов, амидов, 2-хинолонов. Отмечено, что точность анализа значительно снижается вследствие межмолекулярной ассоциации компонентов, что приводит к уменьшению интенсивности поглощения групп и занижению результатов. Повышение точности достигается разбавлением растворов и использованием в качестве растворителей тетрагидрофурана или дихлорметана. Однако более значительные ошибки возникают из-за неверной оценки молекулярных масс определяемых соединений и наличия в молекуле более одного гетероатома. Исправление этого положения возможно препаративным выделением одного класса соединений и установления коэффициента поглощения данной функциональной группы. [c.50]

    Свойства сложных эфиров определяются наличием карбонильной группы, которая в данном случае менее реакционноспособна, чем у альдегидов или кетонов, поскольку находится под влиянием кислорода алкоксиль-ной группы. Температура кипения сложных эфиров ниже, чем у соответствующих кислот, так как ассоциация молекул в данном случае не происходит Тем не менее сложные эфиры являются полярными веществами. Удерживаемые объемы эфиров карбоновых кислот от муравьиной до масляной кислоты и метилового, этилового, пропилового и бутилового спиртов были и,эмерень на различных фазах. На пapaфинe и полиэтиленгликоле в колонке длиной 4 м при 100 °С перекрываются этилформиат и метилацетат. Их мои<но разделить на бензилдифениле , динонилфталате или на р,Р -оксидипропионитриле . [c.143]

    Ассоциация амидов с другими соединениями менее изучена. В случае растворов в бензоле полоса vNH появляется в спектре при частоте, которая явно ниже, чем частота обычной полосы ЫН свободных групп, а доля мономеров значительно больше, чем в случае неполярных растворителей. Это положение сходно с случаем димеров карбоновых кислот в этом растворителе и может быть вызвано той же причиной, а именно ассоциацией мел<ду полярным атомом водорода и я-электронным облаком цикла. Более общие эффекты растворения в случае ацетанилидов были изучены Дайлом и Кемпом [199]. Рассматриваемые явления очень сложны, так как эти соединения имеют два активных центра, и растворители в зависимости от их свойств ассоциируют либо с карбонильным атомом кислорода, либо с атомом водорода группы ЫН. Эти авторы рассмотрели также вопрос о внутримолекулярных связях ацетиламинных соединений и пришли к выводу, что способность растворителя к разрыву таких связей частично зависит от величины энергии, требующейся для поворота ацетиламинной группы в положение, при котором к ней может подойти молекула растворителя. Сузи 200] исследовал самоассоциацию амидов в растворе диоксана. Он считает, что энергия водородных связей в димере примерно такая же, как и у комплексов амид—диоксан, так что АН при димеризации в этом растворителе равна нулю. [c.304]


Смотреть страницы где упоминается термин Ассоциация молекул карбоновых кислот: [c.216]    [c.227]    [c.23]    [c.111]    [c.35]    [c.14]    [c.25]    [c.70]   
Курс теоретических основ органической химии (1959) -- [ c.163 ]




ПОИСК





Смотрите так же термины и статьи:

Ассоциация

Ассоциация кислот

Молекула ассоциация



© 2025 chem21.info Реклама на сайте