Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы определения серебра реакции окисления

    Наиболее распространенные титриметрические методы определения серебра основаны на реакциях осаждения, комплексообра-зования и реакциях окисления-восстановления. В методах титрования по реакциям осаждения в качестве титрантов используют растворы галогенидов, роданидов или цианидов щелочных металлов. Титрование можно вести как без индикатора (метод Гей-Люссака) [16671, так и в присутствии индикаторов — хромата калия (метод Мора) или железоаммонийных квасцов (метод Фоль-гарда). Последний метод получил наибольшее распространение. [c.77]


    Кобальт. Для определения кобальта кинетическим методом используются каталитические реакции окисления перекисью водорода. Так, соединения кобальта катализируют хемилюминесцентную реакцию окисления люминола (чувствительность 10 мкг/мл) и реакцию окисления органического красителя индигокармина (чувствительность 10 мкг/мл). Обе реакции малоизбирательны — анализу мешают соединения в первом случае железа, меди, ванадия, во втором — кадмия, свинца, ртути, марганца, серебра и др. Если перекись водорода восстанавливать некоторыми органическими веществами и добавлять активаторы, то можно открыть 10 и даже 10 мкг/мл кобальта. Для ко- [c.76]

    Определение окисляемости вод, загрязненных фенолами, согласно Чехословацкому стандарту, производится по методу Кубеля, т. е. окислением марганцовокислым калием в кислой или щелочной среде. Стандарт допускает применение для сточных вод и так называемого четырехчасового испытания. Однако окисление марганцовокислым калием является мало эффективным в отношении жирных кислот, присутствующих в фенольных сточных водах.. Основанием для применения марганцовокислого калия в качестве окисляющего реактива было то обстоятельство, что этот метод применяется уже в течение ряда десятилетий, вследствие чего в литературе можно найти много данных для сравнения. Бихроматный метод, описанный в американских стандартных методах, дает более полное окисление жирных кислот. Однако этот метод требует применения большого количества серной кислоты кроме того, если в качестве катализатора добавлено сернокислое серебро, то на результаты определения сильное влияние оказывают присутствующие в пробе хлориды. Определение этим методом требует много времени, так как раствор необходимо кипятить в течение 2 час. Первый недостаток пытался устранить в 1959 г. сотрудник Института водного хозяйства в Братиславе О. Богатырев, который предложил метод с использованием меньшего количества серной кислоты и применением тепла, выделяющегося при смешивании пробы с серной кислотой. При этом значительно сократилось и время проведения реакции. Б настоящее время этот метод испытывается на многих видах сточных вод. [c.347]

    В каталитических методах определения серебра используются также реакции окисления-восстановления неорганических соединений. [c.122]


    Метод предназначен для определения количества кислорода, которое нужно истратить на окисление органических и неорганических веществ, присутствующих в анализируемой воде. Химически потребляемый кислород называют ХПК и выражают в миллиграммах кислорода на 1 л испытуемой воды (мг/л). Этот показатель характеризует загрязненность воды всеми видами веществ, которые можно окислить. Величина ХПК зависит от природы окисляемых веществ, от силы окислителя и от условий окисления. В качестве окислителей применяют бихромат калия в кислой среде, йодат калия в кислой среде и перманганат калия в кислой или щелочной среде. Наибольщее количество веществ окисляется бихроматом калия в присутствии катализатора — сернокислого серебра при длительном кипячении (2 ч). В этих условиях многие органические вещества окисляются полностью до углекислого газа, воды и элементарного азота. Алифатические углеводороды, спирты и кислоты с неразветвленной цепью атомов углерода окисляются на 85—95% только в присутствии катализатора. Ароматические углеводороды и пиридин совершенно не окисляются даже при катализаторе. Определение ХПК бихроматным методом признано наиболее точным, поэтому результат анализа называют ХПК полное [93]. Во многих странах этот метод является стандартным [95]. Метод основан на реакции окисления органических и неорганических веществ, находящихся в анализируемой воде, бихроматом калия в кислой среде в присутствии катализатора. Шестивалентный хром восстанавливается при этом до трехвалентного  [c.266]

    Каталитические реакции для определения серебра можно разделить на следующие группы окисление персульфатом ионов Мп и органических субстратов, окисление хлоридов ионами Се и Мп , замещение цианида в координационной сфере ферроцианид-иона. Эти реакции позволяют определять А + с пределом обнаружения 10 3 мкг/мл (10 М). Описаны также косвенные методы определения серебра (I), основанные на его ингибирующем действии на реакции, катализируемые иодидом. [c.126]

    Высокочувствительные методы определения ультрамикроколичеств серебра основаны на каталитическом действии ионов серебра в реакциях разложения некоторых веществ, а также в реакциях окисления раствором персульфата калия органических и неорга- [c.117]

    Титриметрические методы определения тиоцианатов в основном используют реакции их окисления, реже — осаждения солями серебра. В последние годы появились работы с применением различных ионоселективных электродов. [c.77]

    Среди других физико-химических методов определения мышьяка можно упомянуть кинетические методы [110, 252, 479]. По одному из них [252] микроколичества мышьяка определяют по реакции восстановления ионов серебра железом(П), катализируемой арсенат-ионами. В другом методе [479] используют каталитическое действие арсената на реакцию окисления иодида перекисью водорода. Этот метод применен для определения мышьяка в фосфоре. Чувствительность метода 10 нг As в 15 мл раствора. [c.91]

    В более простом прямом методе используют реакцию окисления лейкооснования малахитового зеленого персульфатом калия, ингибируемую ионами СГ, Вг и J , но ускоряемую ионами серебра титранта. В качестве активатора применяют добавки 2,2 -дипиридила [925]. Анализ осуществляется очень просто. Ошибка определения 16—66 мг бромидов < 0,9%. [c.116]

    Для определения кобальта в исходных материалах для синтеза витамина В12 рекомендуется каталитический метод [1282]. Пробу разлагают смесью растворов азотной и серной кислот с добавлением перекиси водорода, отделяют медь и серебро экстрагированием их дитизонатов четыреххлористым углеродом из аммиачного цитратного раствора совместно с медью и цинком. В экстракте после удаления растворителя и разрушения дитизонатов определяют кобальт в присутствии меди и цинка по каталитическому ускорению реакции окисления производных ализарина перборатом натрия в слабощелочной среде. Метод позволяет определить 0,04—0,6 жкг кобальта в 1 г анализируемого материала. [c.217]

    Таким образом, при анодном процессе присутствие обычных элементов (меди, железа, свинца и цинка) не мешает ни химическому процессу, протекающему в растворе, ни электродной реакции окисления иодид-иона. Поэтому этот метод можно с уверенностью применять для определения серебра в любых объектах и, в частности, в минеральном сырье и продуктах его переработки. [c.301]


    Ниже приводятся разработанные нами методики определения серебра в рудах, концентратах, черновой меди. Для того чтобы получать устойчивые, хорошо воспроизводимые результаты, надо соблюдать некоторые простые предосторожности . Температура раствора перед титрованием не должна превышать 20—22° С, так как растворимость осадка иодида серебра возрастает с увеличением температуры. После каждого определения электрод следует протирать фильтровальной бумагой, а в конце рабочего дня погружать в раствор тиосульфата. Титрование лучше проводить при pH около 2—2,5, так как при таком pH исключается гидролиз солей алюминия (образование коллоидных частиц гидроокиси алюминия вызывает понижение силы тока после конечной точки и, следовательно, менее четкую конечную точку) кроме того, даже при отсутствии алюминия такая кислотность раствора способствует возрастанию тока окисления избыточного иодида. Титрование при pH 2—2,5 исключает влияние марганца (II), который не окисляется анодно при потенциале титрования серебра в менее кислых растворах (при pH больше 2,5) возможно отложение двуокиси марганца на поверхности платинового электрода и появление начального тока, что в известной мере мешает определению серебра. Не следует удалять железо из раствора перед титрованием серебра, так как при этом возможны потери серебра с осадком гидроокиси железа. В отличие от катодного метода не нужно также связывать железо в комплексные соединения, Ре +-ион при потенциале титрования серебра +1,0 в (МИЭ) не восстанавливается на электроде и совершенно не мешает ни реакции в растворе (см. выше), ни анодной реакции иодида. Нельзя оставлять растворы, в которых предполагается титровать серебро, под тягой, где выпаривают солянокислые растворы или где хранится соляная кислота раствор поглощает хлориды и расход иодида на титрова- [c.301]

    В данной работе на основании разработанного нами ранее [1] метода определения величины поверхности серебра, нанесенного на носитель, было проведено исследование влияния величины поверхности носителя и количества нанесенного серебра на величину удельной поверхности (отнесенной к единице веса) и удельной активности (отнесенной к единице поверхности) в реакции окисления этилена в окись этилена. [c.224]

    Метод определения основан на осаждении хлора азотнокислым серебром в присутствии азотной кислоты. Избыток азотнокислого серебра оттитровывают роданистым аммонием в присутствии железоаммиачных квасцов, являющихся индикатором. Помимо солей, в крови содержится много органических веществ (белки, углеводы, жиры и др.), которые могут осаждаться, образуя соединения с серебром, а в некоторых случаях восстанавливать его до металла. Поэтому определение хлора в присутствии органических веществ крови вести нельзя и их удаляют окислением (путем нагревания с марганцовокислым калием). Органические вещества при этом окисляются до углекислоты и воды, а марганцовокислый калий восстанавливается частью до двухвалентного марганца, частью— до темнобурой перекиси марганца. Избыток перекиси марганца восстанавливают до солей двухвалентного марганца при помощи глюкозы, которая не мешает определению. Реакции осаждения хлора и титрования избытка азотнокислого серебра идут по следующим уравнениям  [c.247]

    Описаны косвенные методы определения иодида, основанные на ингибировании реакций, катализируемых ионами серебра [223]. Например, по реакции окисления кадиона ИРЕА персульфатом калия в присутствии 8-10- М Ag+ и пиридина как активатора можно определить (2—8) 10 М иодида. [c.140]

    Прямые титриметрические методы определения серебра, основанные на реакциях окисления-восстановления, не находят широкого применения. Предложен метод определения серебра, основанный на его восстановлении до металла с помощью титрованного раствора Ге304 в присутствии фторидов щелочных металлов при pH 4,10—4,65 с использованием в качестве окислительно-восстановительного индикатора вариаминового синего [840] или в присутствии этого же индикатора посредством восстановления аскорбиновой кислотой [835]. Метод использован для анализа монет. [c.82]

    При оттитровывании персульфат-ионов солью железа к анализируемому раствору прибавляют в избытке титрованный раствор соли железа(П) и соль серебра, каталитически ускоряющую реакцию восстановления персульфата. Затем избыток Fe(II) титруют раствором окислителя [670]. Определению мешают органические вещества, так как реакция между персульфат-ионами и Fe(II) индуцирует окисление органических веществ. Бромиды подавляют такие индуцированные реакции окиеления. Разработан [1003] метод определения персульфат-ионов в присутствии этанола, метанола, аллилацетата, аллилового спирта и метил-изопропиенилкетона с применением бромида натрия в качестве ингибитора индуцированных реакций. [c.108]

    Потенциометрическое титрование можно применять ко всем типам реакций, используемых в аналитической химии осаждение, комплексообразование, окисление — восстановление, кислотно-основное взаимодействие. Например, определение серебра по методу осаждения хлоридом можно выполнять с серебряным индикаторным электродом в паре с каломельным электродом сравнения. Каломельный электрод состоит из металлической ртути и раствора КС1, содержаш,его осадок Н 2СЬ. Концентрация КС1 поддерживается постоянной (насьвденный раствор). Согласно произведению растворимости ПРнд2С12= [Hg2 +] [С1 ] концентрация хлорид-ионов будет оставаться постоянной, потому что концентрация КС1 велика и постоянна. Это значит, что и концентрация ионов ртути тоже будет постоянной, а следовательно, и потенциал ртути в таком растворе будет постоянным. Содержание ионов серебра можно определять с той же парой электродов путем перевода ионов в малодиссоциированные комплексы Ag( N)2 с помощью цианид-иона. [c.15]

    Определение бромпд-ионов основано не только на реакциях окисления—восстановления, но также и на образовании малорастворимых или малодиссоциированных соединений. Поэтому типы используемых индикаторных электродов здесь более разнообразны, чем в методах определения брома. Наряду с окисли-тельно-восстановительными электродами [286] применяют стеклянные электроды с Na-функцией [567], электроды 1-го рода, обратимые к катионам серебра [120, 363] или ртути [109, 539, 714], активность которых связана с активностью ионов брома законами ионных равновесий, электроды 2-го рода, обратимые к анионам Вг [24, 25, 54] и разнообразные ионоселективные электроды мембранного типа (см. ниже). [c.118]

    Для определения малых количеств мышьяка применяют колориметрический метод, основанный на получении синего мышьяково-молибденового комплекса. Описан [15] чувствительный метод определения мышьяка в сере, основанный на сжигании ее, улавливании мышьяка азотной кислотой, отгонке из кислого раствора АзНз, поглощении его слабым раствором иода и последующем фотометрическом определении в виде синего молибденового комплекса, восстановление до которого проводили Sn b. Позднее [42] в качестве восстановителя был применен гидразин-сульфат, что позволило повысить чувствительность метода до 10 %. Недостатком колориметрического метода является необходимость отделения фосфора во избежание искажения результатов. Для определения мышьяка в сере используется отделение мышьяка в виде арсина и определение последнего по Гутцайту [4]. В большинстве случаев мышьяк определяют улавливанием фильтровальной бумагой, пропитанной раствором хлорида или бромида ртути. Применяя принцип фильтрования газа через горизонтально закрепленные бумажки, в значительной степени удается повысить чувствительность метода. Для повышения чувствительности и точности определения мышьяка в сере с успехом может быть использовано конечное определение арсина в виде окрашенного соединения с диэтилдитиокарбаминатом серебра в пиридиновом растворе [43]. Чувствительность метода 2- 10 доопределение хлора в сере проводят нефелометрически в водной вытяжке, полученной при длительном кипячении серы в бидистилляте [4] или при взбалтывании в течение 2 час. на механической мешалке [44]. Для устранения мешающего действия следов коллоидной и сульфидной (НгЗ) серы проводят окисление [4], либо осаждение в виде Ag2S. Чувствительность метода 5-10- %. Показана возможность применения колориметрического определения хлора методом, основанным на связывании иона хлора двухвалентной ртутью в малодиссоциированное соединение и цветной реакции ртути с дифенилкарбазоном с чувствительностью [c.424]

    Амперометрические методы определения основаны главным образом на реакциях образования ионами серебра труднорастворимых осадков с органическими и неорганическими реагентами. В качестве титрантов используются преимущественно органические серусодержащие соединения или иодид-ионы. Титрование проводят с платиновым вращающимся электродом, так как металлическая ртуть взаимодействует с ионами серебра, восстанавливая их до металла. Известны два варианта титрования катодный, основанный на восстановлении ионов серебра или органического реагента, и анодный,— при котором фиксируется ток окисления иодид-ионов или серусодержащих реактивов на аноде [357]. [c.86]

    Серебро катализирует реакцию окисления Mii(II) до МПО4 персульфат-ионами [1102, 1261, 1262, 1415, 1589]. Между количеством окисленного марганца и концентрацией серебра в растворе существует линейная зависимость в пределах 0,02—0,2 мкг1мл. Определенной концентрации серебра соответствует предельное количество ионов марганца(П), которое может быть полностью окислено до перманганата [1102]. В случае более высоких концентраций марганца(И) последний реагирует с перманганатом с образованием нерастворимой двуокиси марганца. Метод рекО мендован для определения серебра в металлическом свинце [1102] и в геологических материалах [1261, 1262]. [c.123]

    И. И. Эйтингон тщательно изучил реакции нитрования бензола и толуола слабой азотной кислотой в присутствии ртути и других катализаторов и установил оптимальные условия процесса. Он особо отмечает трудность разделения продуктов нитрования бензола— пикриновой кислоты и динитрофенола. Эйтингон указывает, что замена ртути висмутом, таллием или ураном не дала положительных результатов. В случае нитрования толуола, кроме нитротолуола и ж-тринитрокрезола, им была выделена -нитробензойная кислота. В ряде патентов рекомендуется применять наряду с ртутью и другие металлы например, марганец, алюминий, серебро 2 б . Нитраты меди, цинка, железа, никеля, кобальта и висмута при окислительном нитровании оказались неактивными . Определенное значение может иметь только добавка в реакционную массу марганца, который способствует реакции окисления побочно образующейся щавелевой кислоты до Og и HjO. Окисление щавелевой кислоты препятствует накоплению в реакционной массе плохо растворимой щавелевокислой ртутиб 9. в 1948—1952 гг. были опубликованы три рабо-ты 9.70 и взят патент на получение динитрофенола и пикриновой кислоты непосредственно из бензола методом окислительного нитрования. В экспериментальной части приводится оптимальный вариант получения 2,4-динитрофенола, указанный в одной из этих работ . [c.244]

    Каталитическая реакция окисления ионов марганца(П) до перманганат-ионов рекомендована для определения серебра в полевых условиях в геологических материалах [1261, 1262]. Метод основан на предварительном отделении серебра от основы анализируемого материала экстракцией бензольным раствором триизооктилфосфата, реэкстракции его разбавленным раствором соляной кислоты и последующем определении кинетическим методом. Ниже приведена методика анализа [1262]. [c.179]

    Определению серебра мешает лишь палладий, который также экстрагируется триизооктилфосфатом и катализирует реакцию окисления ионов марганца(П). Метод позволяет проводить 80 определений серебра в день. [c.179]

    Каталитический метод [1102] основан на способности ионов серебра ускорять реакцию окисления марганца(П) персульфатом аммония до перманганата. Свинец предварительно осаждают в виде PbSOi. Метод позволяет определить 1,5 10 % серебра с ошибкой 10%. Определению мешают галогенид-ионы и другие ионы, реагирующие с персульфатом (ванадий, хром). Определение серебра в мышьяке и арсениде галлия [462]. Полярографическое определение с графитовым Электродом и насыщенным каломельным электродом проводится так. [c.185]

    Методы определения марганца в титане и его сплавах аналогичны методам определения этого элемента в сталях. Для определения марганца в титане был предложен объемный метод основанный на окислении марганца персульфатом аммония с добавкой нитрата серебра и титровании образующегося иона перманганата стандартным раствором арсеннта натрия. В присутствии большого количества титана стехиометрия этой реакции зависит от содержания марганца. Поэтому титрование лучше проводить стандартными растворами соли Мора с добавкой перманганата калия [c.59]

    Для определения оксиалкеновых групп применяли реакцию окисления бихроматом [5, 6], однако метод на основе этой реакции мало специфичен. Морган [7], использовавший иодистоводородную кислоту для отщепления оксиэтиленовых групп в простых и сложных эфирах полиэтиленгликоля, наблюдал выделение этилена и алкилиодида, в частности этилиодида. Алкилиодид поглощали раствором нитрата серебра и определяли галоген по Фольгарду. Этилен улавливали и определяли с помощью брома. Суммарное содержание этилена и алкилиодида характеризует общее содержание оксиэтиленовых групп в молекуле. [c.220]

    В большинстве случаев определения выполняют непрямым методом. Избыток КМПО4 оттитровывают в щелочной среде растворами формиата натрия (в присутствии солей кобальта, никеля, меди или серебра как катализаторов), муравьиной кислоты, соли таллия (I), цианида или же в кислой среде растворами щавелевой кислоты или соли железа (II). Если реакция окисления протекает длительное время, например при непрямых определениях органических веществ, то необходимо проводить холостой опыт. [c.8]

    Бихроматный метод. Определение бихроматной окисляемости основано на окислении хромовой кислотой органических веществ, находящихся в сухом остатке, при кипячении в присутствии концентрированной НгЗО . Для лучшего окисления органических веществ хромовой смесью его проводят в присутствии катализатора — сернокислого серебра. Хромовая кислота, не вступившая в реакцию, оттитро-вываегся раствором соли двухвалентного железа  [c.535]

    Методы определения фосфита и гипофосфита аналогичны. Реакции этих анионов с различными окислителями проходят медленно. В современных методах существенно снижено время, необходимое для количественного окисления фосфита. Использована [10] реакция окисления фосфита (и гипофосфита) церием (IV), катализируемая ионами серебра(1) [И], рекомендован смешанный катализатор, содержащий нитраты марганца(II) и серебра (I). Со смешанным катализатором время окисления фосфита и гипо- )Осфита уменьшается до 10 и 7 мин соответственно. [c.477]

    Для определения селена известно несколько амперометрических методов, основанных на осаждении иона 5еОз" различными реагентами и на способности селена (IV) вступать в реакции окисления — восстановления. При осадительном титровании применяют в качестве титрантов нитрат ртути (I) [1], нитрат серебра [2], ацетат свинца(II) [3]. Эти методы малочувствительны, определению селена (IV) мешают многие анионы. [c.245]

    Джильболт и Маккерди разработали ряд практических методов определения неорганических (фосфиты, ртуть, теллур) и органических (спирты, хелаты металлов) соединений с применением смешанного катализатора серебро(1) — марганец(И) для ускорения очень медленных реакций окисления церием(1У) соответствующих соединений [166—168]. При проведении исследований обнаружена интересная кинетическая особенность, которая состоит в том, что совместное действие этих двух катализаторов значительно больше суммы эффектов каждого из них в отдельности. Это явление пока еще не объяснено и заслуживает дальнейшего изучения. [c.350]

    Реакция окисления Мп персульфатом до Мп01, катализируемая ионами серебра, протекает при температуре 100°С в среде 0,4 М Н3РО4 (рН 1) [191]. Оптимальная концентрация Мп504 равна 6-10 М, персульфат калия вводят из расчета 2 г на 10 мл раствора. Определение серебра проводят методом фиксированного времени (15 мин). Перед измерением оптической плотности раствора КМ.ПО4 (525 нм) его охлаждают до [c.130]

    Разработан метод определения растворимых солей и оксида серебра в кристаллах Agi [199, 200]. Растворимые соли вымывали водой, содержание серебра определяли с помощью реакции окисления сульфаниловой кислоты персульфатом в присутствии дипиридила. [c.132]

    Объешше методы определения находят широкое применение при определении серебра в самых разнообразных материалах. В основе этих методов лежит использование реакций осаждения и окисления-восстановления, в качестве титрантов используют растворы галоге-вщдов, роданидов или цианвдов щелочных металлов. [c.12]

    Как уже отмечалось ранее, весовой метод с использованием димедона и колориметрический метод, основанный на применении реактива Шиффа, специфичны для альдегидной карбонильной группы. Так как альдегиды окисляются легче кетонов, реакция окисления окисью серебра была использована для определения альдегидной группы в присутствии кетонов. Сигель и Вайс описали методику, в которой навеску (0,5 мг-экв) обрабатывают 0,1 п. раствором нитрата серебра, осажденное металлическое серебро отделяют фильтрованием, а избыток ионов серебра в фильтрате определяют титрованием 0,05 н. раствором роданида калия. По данным этих исследований определение альдегидов в присутствии кетонов, за исключением циклопентанона и циклогексанона, не вызывало никаких затруднений. [c.145]

    Тетраметилдиаминотрифенилметан дает более чувствительную реакцию, чем дифенилпроизводное. Эта реакция была применена для определения марганца в биологических материалах (см. разд. Ход анализа на стр. 555) после окисления его перйодатом. При 75—85° реагент окисляется, образуя окрашенные в желтый цвет продукты окисления. В указанном интервале температур перйодат заметно не реагирует с соединением. Этот метод уступает перманганатному методу определения во всех отношениях, кроме чувствительности, которая очень велика (0,0001 уМп1см для lg /о// = 0,001 при 475 мц). Поэтому метод имеет значение в тех случаях, когда количество анализируемого образца ограниченно. Извлечение 0,05— 0,2 у марганца, добавленного к биологическим материалам, составляет 96—112%. Чувствительность можно еще больше увеличить, проводя экстракцию окрашенных продуктов окисления не смешивающимися с водой органическими растворителями. Хром, ванадий и церий высших степеней окисления также дают окрашенные в желтый цвет соединения. Медь, железо, свинец и серебро- не мешают. Хлориды должны отсутствовать. [c.551]


Смотреть страницы где упоминается термин Методы определения серебра реакции окисления: [c.249]    [c.105]    [c.114]    [c.87]    [c.118]    [c.114]    [c.24]    [c.669]    [c.161]    [c.120]    [c.114]    [c.287]   
Аналитическая химия серебра (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Окисление серебром

Реакции окисления

Реакция определение

Серебро реакции



© 2025 chem21.info Реклама на сайте