Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изотопы адсорбционной хроматографией

    Газо-адсорбционная хроматография наиболее пригодна для анализа легких газов, к числу которых относят водород, азот, исло-род, газы нулевой группы периодической системы, метан, оксид и диоксид углерода, оксиды азота и др. Все они не регистрируются ионизационными детекторами. Поэтому их анализ производят при помощи катарометров или же высокочувствительных детекторов специального типа. Для газо-адсорбционной хроматографии характерна возможность разделения смесей изотопов. [c.65]


    Разделение изотопов водорода. Методом газо-адсорбционной хроматографии на молекулярных ситах 5А при температуре жидкого азота была разделена смесь, состоящая из Ва, НО и Нг [76]. На этом типе цеолита возможно даже препаративно выделять дейтерий из смеси с водородом [77]. На цеолитах могут быть разделены смеси изотопов водорода, содержащие и тритий [78, 79]. Авторам работы [79] удалось разделить шестикомпонентную смесь изомеров Нг, НВ, НТ, ОТ, Тг на цеолитах типа,4А, подвергнутых глубокой активации в вакууме при 450° С при низкой скорости газа-носителя гелия и температуре колонки —160° С. На цеолитах 5А и 13Х при температуре жидкого азота были разделены смеси орто- и пара-водорода [78, 80]. Однако, если эти цеолиты содержат примеси железа, полного разделения этой смеси нельзя добиться, так как имеет место взаимное превращение этих модификаций [80, 81]. [c.232]

    В последние годы наблюдается большой интерес к разделению и анализу изотопов и изомеров водорода методом газо-адсорбционной хроматографии. Этот анализ, в частности, очень важен для биохимии [1] и геофизики [2]. Газохроматографический анализ изотопов и изомеров водорода осложняется двумя равновесными реакциями  [c.142]

    Разделение изотопов водорода методом газовой адсорбционной хроматографии. [c.92]

    Аналитическое разделение изотопов водорода методом проявительной газо-адсорбционной хроматографии на капиллярной колонке. [c.168]

    Аналитическое разделение изотопов водорода методом газо-адсорбционной хроматографии с применением капиллярных колонок. [c.168]

    Адсорбционная хроматография изотопов водорода на капиллярных колонках. [c.169]

    Хроматография — метод разделения и анализа смеси веществ, основанный на различной сорбции компонентов анализируемой смеси определенным сорбентом. Впервые X. предложена в 1903 г. русским ученым М. Цветом. Разделение ведут в колонках, наполненных силикагелем, оксидом алюминия, ионообменными смолами (ионитами) и др., или же на специальной бумаге. Вследствие различной сорби-руемости компонентов смеси (подвижная фаза) происходит их зональное распределение по слою сорбента (неподвижная фаза) — возникает хроматограмма, позволяющая выделить и проанализировать отдельные вещества (процесс подобен многоступенчатой ректификации). В зависимости от агрегатного состояния подвижной фазы различают газовую и жидкостную X. по механизмам разделения — ионообменную, осадочную, распределительную и молекулярную (адсорбционную) X. в зависимости от техники проведения разделения в X. различают колоночную (колонки сорбентов), бумажную (специальная фильтровальная бумага), капиллярную (используют узкие капилляры), тонкослойную X. (применяют тонкие слои сорбентов). Методами X. анализируют смеси неорганических и органических соединений, концентрируют следы элементов. В химической технологии X. применяют для очистки, разделения веществ. X. позволяет разделять и анализировать смеси веществ, очень близких по свойствам (напр,, лантаноиды, актиноиды, изотопы, аминокислоты, углеводороды и др.). [c.151]


    Чувствительность обнаружения выше, чем в случае хроматографии на бумаге, поскольку разделяемые вещества концентрируются в значительно меньших пятнах. Поэтому на тонкослойных хроматограммах могут быть обнаружены также значительно менее активные вещества и изотопы с меньшей энергией излучения. Эффект самопоглощения в адсорбционном слое, по-видимому, играет небольшую роль. [c.66]

    Фазовые адсорбционные равновесия и адсорбционно-десорбционные разделения исследовались нами динамическим стационарным методом [7]. Применение же хроматографии для точных измерений низкотемпературных адсорбционных коэффициентов разделения (5) в ряду орто-иара-модификаций изотопов водорода затрудняется зависимостью от степени заполнения поверхности (0) [4—9]. На окиси алюминия для хроматографии (ОАХ) пами наблюдалась преимущественная адсорбция 0-Н2 [6, 7] и П-Ва [8] соответственно из смесей 0-Н2— и-Нз и тг-Ва — о-В . Количественное исследование разделения стало возможным после специальной обработки адсорбента, смысл которой, по-видимому, заключался в частичном подавлении и стабилизации парамагнитных центров путем хемосорбции атомов водорода. [c.63]

    Адсорбция и ионный обмен. Распределение изотопных молекул между адсорбентом и газом или раствором неравномерное. Повторение процесса адсорбции и десорбции ведет к разделению изотопов. На практике разделение лучше всего достигается с помощью адсорбционной (газовой или жидкостной) или ионообменной хроматографии. Хроматографическую колонку наполняют одним из видов адсорбентов (активированный уголь) или ионообменных материалов (смол, цеолитов и т.п.). По мере продвижения изотопных молекул или ионов изотопов по колонке идет их разделение. [c.454]

    Применение изотопной и адсорбционной техники в изучении каталитических реакций приобретает все большее значение. Метод меченых атомов дает возможность уточнить механизм каталитических реакций. Метод адсорбции, не говоря уже о том, что адсорбция является существенно необходимой стадией самой каталитической реакции, может дать сведения относительно величины поверхности и пор катализатора. Весьма обещающим является, наконец, применение в катализе новейшей хроматографической техники, которая позволяет проводить быстрое сравнительное исследование активности нескольких катализаторов (в том числе в опытах по детальному исследованию свойств последних с использованием изотопов). Хроматография дает возможность измерить то быстрое изменение активности катализатора, которое наблюдается в первые минуты после введения реагирующих веществ, что в свою очередь может оказаться весьма полезным для оценки роли дефектов решетки в действии различных катализаторов, в особенности полупроводникового типа. [c.723]

    Мостом, связывающим молекулярную характеристику адсорбционной системы — потенциальную энергию межмолекулярного взаимодействия молекулы с адсорбентом Ф — с измеряемыми экспериментально термодинамическими характеристиками этой системы, является молекулярная статистика. В газовой хроматографии измерения проводятся обычно (за исключением разделения изотопов и изомеров водорода, литературу см. в [1] и в гл. 8) при достаточно высоких температурах, поэтому статистические функции распределения (суммы по состояниям) можно вычислять в классическом приближении. [c.82]

    Исследование изотопных систем показало, что изотопы имеют различные коэффициенты адсорбции и распределения и могут быть разделены методами газо-адсорбционной и газо-жидкостной хроматографии. [c.244]

    Среди новых методов определения величины поверхности и получения таких термодинамических характеристик адсорбционной системы, как константы Генри, изотермы и теплоты адсорбции при малых и средних заполнениях поверхности, важное значение приобрел хроматографический метод. Если с помощью обычных вакуумных статических методов изучалась адсорбция лишь немногих молекул (обычно это благородные газы, азот, двуокись углерода, аммиак, метан, вода, метанол, бензол, гексан), то методы газовой и жидкостной хроматографии позволили быстро изучать адсорбцию огромного количества молекул от изотопов и изомеров водорода до тяжелых макромолекул. Кроме того, хроматографические [c.11]

    Обзор. Разделение изотопов различными методами, в том числе методом адсорбционной газовой хроматография. [c.160]

    Быстрое разделение изотопов водорода адсорбционной газовой хроматографией. (Т-ра от —54 до —160° мол. сито Линде.) [c.168]

    Адсорбция и хроматография. О применении адсорбционных методов для разделения изотопов инертных газов имеются весьма ограниченные данные. [c.187]

    При рассмотрении вопросов изотопии углерода необходимо остановиться на последних работах Э.М. Галимова, Л.А. Кодиной, М.Г. Фрик, которые диагностику и корреляцию нефтей проводят с позиций молекулярно-изотопного подхода. Суть его заключается в том, что из нефти или экстракта методом адсорбционной хроматографии выделяют ряд фракций увеличивающейся полярности от У В до асфальтенов и определяют их и.с.у. По характеру кривых все нефти разбивают на две группы, для которых соответственно характерны серповидная или сублинейная кривые. В восстановительной обстановке асфальто-смолистые вещества образуются главным образом при полимеризации ненасыщенных структур исходного ОВ, т.е. липидной его составляющей с самым легким и.с.у. Из них же образуются и УВ. Поэтому ясно, почему УВ и асфальтены этих нефтей также имеют самый легкий и.с.у. Различные фракции смол представляют собой наиболее окисленную часть ОВ и поэтому характеризуются самым тяжелым и.с.у. В окислительной обстановке всё ОВ подвергается глубокой окислительной трансформации и асфальто-смолистая часть образуется в основном при реакции конденсации кислородсодержащих соединений. Поэтому, естественно, и.с.у. закономерно утяжеляется при переходе от УВ к смолам и асфальтенам. С этих позиций нетрудно предсказать, что у большинства нефтей Широтного Приобья будет серповидная, а у нефтей северных районов сублинейная кривые. Таким образом, тяжелый и.с.у. асфальтенов в некоторых нефтях является частым случаем. [c.70]


    Было замечено, что разделение зависит не только от различий в давлении пара изотопнозамещенных соединений, но и от типа жидкой фазы и адсорбента. При увеличении полярности неподвижной фазы эффективность разделения для каждой пары изотопов уменьшается. Это означает, что взаимодействие с жидкой фазой имеет знак, противоположный эффекту, обусловленному разностью в давлении паров изотопных систем. В газо-адсорбционной хроматографии взаимодействие изотопа с адсорбентом является решающим для порядка выхода, а разность в давлениях пара сказывается незначительно. Однако это предположение нельзя признать окончательным. До недавнего времени для разделения системы изотопов использовали в основном специфические адсорбенты (цеолиты и пористые стекла), несущие на поверхности сосредоточенные положительные или отрицательные заряды гидроксильные группы, я-связи, отрицательные и имеющие малые размеры диполей и т. д. В связи с этим представляли несомненный интерес результаты иссле- [c.244]

    Газо-адсорбционная хроматография смесей изотопов водорода. (Адсорбент AlgOs с добавкой Fe детектирование в виде паров воды.) [c.169]

    Хроматографический метод (хроматография), открытый русским ботаником М. С. Цветом (1903), впоследствии был детально разработай в экспериментальном и теоретическом отношениях и получил шир0)ше применение в различных научных областях, в том числе в химичсскоп кинетике. Не останавливаясь па описании всех разновидностей метода хроматографического анализа и иа теории хроматографических процессов 2, отметим только термохроматографию, представляющую собой один нз наиболее перспективных методов анализа газовых смесей, особенно эффективных в случае смесей, содержащих сильно различающиеся по их адсорбционным свойствам компоненты [72], а также радиохроматографию [96] — метод, основанный на применении радиоактивных изотопов, что значительно облегчает и упрощает получение и анализ кривых раснреде- [c.73]

    Вследствие ограниченности областей применения хроматографии для изотопного анализа в настоящей монографии не рассматривается её теория. В большинстве случаев возможности использования какой-либо хроматографической методики для решения конкретной задачи изотопного анализа могут быть оценены только на основе уже полученного результата хроматографического разделения смеси изотопнозамещенных веществ, хотя при постановке самого эксперимента необходимо пользоваться всем огромным опытом, накопленным для хроматографии как таковой. Отметим только, что большинство работ по разделению и анализу изотопнозамещенных веществ относятся к молекулярному водороду и дейтерированным соединениям, в том числе и с большими молекулярными массами. Это связано с тем, что, в отличие от изотопнозамещенных молекул с изотопами большей массы, для водородсодержащих соединений различие в адсорбционных свойствах при изотопном замещении остаётся относительно большой. Например, относительная разница в энергии нулевых колебаний для молекул К-Н и к-О остаётся близкой к л/ntQJm = 1,41, мало завися от массы Р (см. (4.3.8)). [c.123]

    Астат получается облучением висмута или тория а-частицами высокой энергии. Следовательно, для получения астата необходимо его отделение от большого количества облученного висмута и сопутствующих радиоактивных изотопов полония и свинца или тория и продуктов отщепления. Для этой цели могут быть использованы методы соосаждения, экстракции, хроматографии и дистилляции. Элементарный астат за счет адсорбции соосаждается с XII из сильнокислых растворов астат не адсорбируется. При восстановлении растворов соединений теллура Sn la в кислой среде до элементарного теллура происходит адсорбционное соосаждение с ним астата, который очищается от иода, таллия, сурьмы и осмия. В щелочной среде соосаждения не происходит. [c.292]

    Первые опыты но формированию на внутренней поверхности стеклянных капилляров адсорбционного слоя были проведены Монке и Заффертом [23, 74]. Капилляры из иенского стекла заполняли целиком 12—17%-ным водным раствором аммиака, запаивали и нагревали 30 час. при 170—180° С. Затем вскрывали капилляр, удаляли избыток раствора и, медленно продувая инертный газ, нагревали до 180° С для удаления следов воды и аммиака. Как показали микроскопические исследования, в зависимости от условий обработки на поверхности капилляра образуется слой силикагеля толщиной 5—20 мкм. Такая природа этого слоя была подтверждена также методом ИК-спектроскопии. Обработанная таким образом колонка длиной 80 м позволила осуществить один из наиболее любопытных анализов во всей истории газовой хроматографии — разделить ядерно-спиновые изомеры изотопов водорода (рис. 36). [c.110]

    Аномальные явления, обусловленные адсорбцией, наблюдаемые в газовой хроматографии полярных соединений, особенно четко проявляются при анализе сорбционно активных и химически лабильных полярных соединений. В частности, эти явления являются характерными для газовой хроматографии летучих комплексов металлов [19, 62, 232]. Для большинства хелатов металлов наблюдается кондиционирование (модифицирование) колонки анализируемой пробой. При вводе в свежеприготовленную колонку первых проб, пики хелатов часто вообще не фиксируются детектором. Колонка (ТН) выполняет роль адсорбционной ловушки. Затем, после ввода нескольких проб появляется маленький пик, который увеличивается и достигает постоянного размера только после ввода 5—20 проб. Это явление объясняется, как и для поляр1Из1х органических соединений (см. выше), насыщением адсорбционно активных центров поверхности ТН. Изменение природы ТН иногда позволяет избежать этого явления. Так, авторы работы [233] отмечают, что количество хелата железа (III), необходимое для насыщения сорбента колонки, уменьшается при переходе от несиланизированного к силанизированному носителю а при использовании полимерного ТН (тефлона) возможно проведение прямого количественного определения этого соединения без стадии насыи1ения колонки анализируемым образцом. Однако, по-видимому, и в случае полимерного ТН операция насыщения желательна [233[. Явление адсорбции анализируемых хелатов сорбентом было подтверждено независимыми экспериментами с использованием радиоактивных изотопов металла [62]. [c.85]

    Влияние дейтерирования на удерживание углеводородов. Адсорбционные свойства дейтерия и водорода, как и свойства дейтерирован-ных и обычных углеводородов, несколько различаются (литературу см. в гл. 11 предыдущей книги этой серии [1]). В зависимости от общей массы и строения молекулы, природы поверхности и температуры опыта дейтерированные органические вещества могут адсорбироваться сильнее или слабее соответствующих недейтерированных. соединений. Дейтероуглеводороды на графитированной саже адсор--бируются слабее соответствующих обычных углеводородов, однако на сильно полярных адсорбентах некоторые из них адсорбируются сильнее. В некоторых случаях изменение последовательности удерживания наблюдается при изменении температуры. Поляризуемость дейтерированных углеводородов несколько меньше поляризуемости их недейтерированных аналогов. Поэтому потенциальная энергия дис- персионного взаимодействия дейтерированной молекулы с твердым телом должна быть несколько меньше, чем для недейтерированной молекулы, и удерживание дейтерозамещенных соединений должно быть слабее. В случае хроматографии углеводородов на графите этот эффект, по-видимому, является основным. Противоположные эффекты, связанные с различием энергетических уровней адсорбированных молекул с тяжелым и легким изотопом, быстро убывают с ростом массы и момента инерции молекулы, а также с повышением температуры. Поэтому эти эффекты существенны только для наиболее легких молекул при низких температурах. Влияние различия нулевых энергий дейтерированных и обычных углеводородов может стать -существенным лишь для молекул, в которых большое число атомов Н замещено на атомы D. При газохроматографическом разде-.Ленин дейтерозамещенных углеводородов на графитированной саже. [c.87]

    Десять лет тому назад адсорбционную молекулярную хроматографию применяли в основном для разделения газов. В настоящее время диапазон разделяемых методом адсорбционной и ситовой хроматографии веществ значительно расширился. Он охватывает самые разнообразные вещества — от изотопов и изомеров водорода до синтетических полимеров, белков и вирусов. Этому способствовали главным образом следующие усовершенствования 1) регулирование однородности и специфичности молекулярного поля адсорбентов путем направленного синтеза адсорбентов и модифицирования их поверхности 2) расширение диапазона температур работы газо-хроматографических колонн до 500° С 3) применение сильно адсорбирующихся газов-носителей при высоких давлениях, сблизившее газовую хроматографию с жидкостной 4) развитие жидкостной молекулярной хроматографии на адсорбентах с регулируемым химическим составом поверхности и регулируемой пористостью, в частности, на поверхностно-пористых адсорбентах 5) создание набора молекулярных и макромолекулярных сит, в особенности, ненабухающих 6) разработка чувствительных методов детектирования в жидкостной хроматографии. [c.5]


Смотреть страницы где упоминается термин Изотопы адсорбционной хроматографией: [c.593]    [c.43]    [c.78]    [c.5]    [c.96]    [c.57]    [c.244]    [c.57]   
Радиохимия (1972) -- [ c.219 , c.220 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционная хроматографи

Хроматография адсорбционная



© 2025 chem21.info Реклама на сайте