Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лазеры свободных электронах

    Гелиево-неоновый лазер имеет оранжево-красное излучение при длине волны 6329 А с выходной мощностью порядка нескольких милливатт. Пропускание лазерного излучения имеет место между энергетическими уровнями неона, гелий же используется для оптической накачки неона и создания инверсной заселенности. При пропускании через гелий электрического тока его атомы переходят в возбужденные состояния в результате столкновения со свободными электронами и затем ступенчато спускаются на соответствующие энергетические уровни. Те атомы, которые попадают на уровни 2 5 и 2 s, остаются там в течение длительного времени. Постепенно атомы собираются на тех уровнях, заселенность которых достаточно высока. При столкновении возбужденного атома гелия с невозбужденным атомом неона возбуждение переносится на последний. Две другие линии наблюдаются при 3,39 и 1,15 мкм (рис. 10.22). [c.168]


    ЛАЗЕРЫ НА СВОБОДНЫХ ЭЛЕКТРОНАХ [c.215]

    За последние годы был разработан лазер с переворотом спина (ЛПС), перестраиваемый в широком инфракрасном диапазоне длин волн с выходной мощностью более одного ватта, что значительно превышает мощность полупроводниковых лазеров. Поскольку имеется несколько обзоров по ЛПС [52], упомянем только их основные особенности, влияющие на характеристики перестройки. Принцип действия ЛПС основан на стимулированном комбинационном рассеянии излучения, происходящем на электронах проводимости в некоторых охлажденных до криогенных температур полупроводниках, которые помещены в магнитное поле и облучаются сфокусированным светом от другого мощного лазера. Как и в случае эффекта Зеемана для свободных атомов, энергетические уровни этих электронов расщепляются приложенным магнитным полем В на уровни Ландау [c.259]

    Для многих конкретных систем, в частности лазеров, широко применяется математическое моделирование происходящих в них процессов. Важнейшим принципом построения таких моделей является их разбиение на относительно независимые блоки (модули). Так для лазеров обычно рассматриваются процесс создания неравновесности, кинетика активной среды и динамика излучения. Модель кинетических процессов также разбивается на отдельные блоки поступательное движение, вращательное, колебательное, электронная молекулярная кинетика, атомно-молекулярная (процессы с участием свободных атомов и радикалов), ионно-молекулярная, химическая, гетерогенная, кластерная. Для каждого из этих модулей имеется своя специфика, свои методы, свои характерные скорости процессов. Задачи моделирования, с одной стороны, связаны с разработкой конкретных модулей (в том числе получение характерных констант, анализ приближений), а с другой — с построением общей модели на основе той или иной физической картины (включающей набор блоков, методику их взаимосвязи, привязку параметров). [c.236]

    Среди лазеров на основе органических соединений с оптической накачкой наиболее глубоко изучены лазеры на электронных переходах в сложных органических молекулах. В результате техника ЛОС достигла весьма высокого уровня развития, необходимого при использовании таких сложных устройств, как лазеры, а ценные свойства ЛОС обеспечили им очень широкий круг применений в различных физико-химических исследованиях. Применение ЛОС прежде всего в спектроскопии, фотохимии, в исследованиях селективного воздействия лазерным излучением на вещество привело к возникновению или существенному развитию принципиально новых методов исследования, таких как двухфотонная спектроскопия, свободная от доплеровского уширения, многофотонная резонансная ионизационная спектроскопия, спектроскопия когерентного антистоксова комбинационного рассеяния, внутрире-зонаторная абсорбционная спектроскопия и др. Рассмотрению [c.197]


    В последнее время стали применять в качестве полупроводников также и химические соединения, в первую очередь между элементами третьей ж пятой групп (полупроводники типа В ). Особенно ценными свойствами обладают сурьмянистый индии 1п8Ь, чувствительный к инфракрасному свету с очень большой длиной волны и ьшшьяковистый галлий ОаАз, в котором рекомбинация электронов и дырок дает интенсивное световое излучение (квантовый генератор света или полупроводниковый лазер, превращающий энергию электрического тока непосредственно в световую). Полупроводниковыми свойствами обладают и многие окислы. Так, окись цинка является электронным полупроводником роль доноров играют при этом избыточные атомы или однозарядные ионы цинка. Окись меди(1) является дырочным полупроводником роль акцепторов играют избыточные атомы кислорода. Однако подвижность носителей тока (электронов или дырок) в окисных полупроводниках низка, так что для радиотехники они менее ценны. Для выпрямления сильных токов используют тонкий слой окиси меди(1), нанесенный окислительным процессом на поверхность металлической меди (купроксный выпрямитель). Это — простейший аналог полупроводникового диода, в котором, однако, роль электронного проводника играет обычный металл. Свойства окисных полупроводников сильно зависят от состояния их поверхности. Так, электропроводность окиси цинка понижается в атмосфере кислорода, который адсорбируется поверхностью и захватывает свободные электроны. Способность окислов ускорять (катализировать) газовые реакции связана с полупроводниковыми свойствами, т. е. с наличием свободных электронов.— Доп. ред. [c.457]

    Если пучок электронов движется со скоростью, близкой к скорости света, через периодически меняющееся магнитное поле (через виглер), то в направлении движения пучка происходит излучение света. Длина волны света определяется периодом изменения поля в виглере и энергией электронов. Здесь свет ведет себя так же, как и при инверсии заселенностей. Если поместить такой виглер между зеркалами подходящего лазера, то можно вызвать стимулированное излучение, которое даст лазерный пучок. Такой прибор получил название лазера на свободных электронах (СЭЛ). [c.215]

    В случае применения обычных источников света при напряженности поля Е < 10 -г 10 В/м поляризация линейна и основной вклад вносит первый член разложения с коэффициентом (поляризуемостью) при этом последующие члены разложения малы и составляют 10 от интенсивности линейного члена. В этих условиях все такие щироко распространенные явления, как преломление, отражение, интерференция, дифракция света связаны с линейной оптикой. Однако в случае лазерных источников света при напряженности поля более Ю В/м начинают вносить вклад нелинейные члены, что может приводить к резким скачкам в поляризуемости материала. В частности, различного рода резонансные эффекты в металлических кластерах позволяют создавать электроннооптические преобразователи со значительным усилением при определенных условиях первоначального электрического поля. Так, например, для наноматериалов, включающих нанокластеры золота, серебра и др. [5], плазмонный резонанс возникает при совпадении частоты издучения лазера с частотой колебаний свободных электронов в нанокластерах металлов. [c.490]

    Энергообмен между свободными электронами и колебательновозбужденными молекулами определяет ФРЭЭ и среднюю энергию электронов в газоразрядной плазме - активной среде молекулярных лазеров. [c.296]

    Природу, структуру и электронное состояние промежуточного продукта. Для абсорбционной спектроскопии можно использовать источник белого света в сочетании со спектрографом для получения фотографически зарегистрированного обзорного спектра поглощающих соединений в реакционной системе. В других случаях для сканирования спектрального диапазона может применяться монохроматор с фотоэлектрическим приемником. Многие исследуемые короткоживущие интермедиаты обладают достаточно большим оптическим поглощением из-за наличия разрешенного электронного дипольного перехода на более высокий уровень энергии, В этом случае, например, триплетные возбужденные состояния могут наблюдаться по их триплет-триплетному поглощению. В общем случае индивидуальные полосы поглощения имеют тем большую амплитуду, чем они уже. Вследствие этого эффекта атомы имеют разрешенные линии поглощения с особенно большими амплитудами. При количественных измерениях поглощения обычно выбирается длина волны, при которой наблюдается сильная полоса поглощения и на нее не накладываются полосы поглощения других соединений, В экспериментах по оптическому поглощению в качестве источника света можно применять лазеры. Очень эффективны в лазерных абсорбционных исследованиях перестраиваемые лазеры на красителях, особенно для веществ с узкими полосами поглощения (таких, как атомы и малые радикалы), поскольку лазерное излучение отличается высокой монохроматичностью и узкой спектральной полосой. Повышения поглощения можно достигнуть, заставив световой пучок многократно пересекать образец с помощью соответствующего расположения зеркал в многопроходовом абсорбционном эксперименте. Вновь для этой цели превосходно подходят лазеры благодаря малой расходимости лазерного пучка. В ряде случаев можно создать источник света, который спектрально адекватен абсорбционным свойствам именно исследуемых соединений. Например, можно сконструировать электрические разрядные лампы, содержащие подходящие газы и испускающие резонансные спектральные линии (при переходе из первого возбужденного состояния в основное) многих атомов и простых свободных радикалов. Очевидно, что резонансные спектральные линии точно соответствуют длинам волн поглощения этих же веществ, соответствующим переходу из основного электронного состояния. Если эти атомы или простые радикалы присутствуют в реакционной смеси, то будет наблюдаться резонансное поглощение. Если спектральные ширины полосы испускания источника и полосы поглощения объекта исследования совпадают, то чувствительность абсорбционных измерений может быть высокой при различающейся избирательности, так [c.195]


    Оптические квантовые генераторы получили название лазеров. Излучение распространяется узким пучком и характеризуется высокой концентрацией энергии. Режим работы их может быть импульсным и непрерывным. К настоящему времени созданы лазеры на кристаллах СаРа, aW04, ЗгМо04, стеклах и пластмассах. В качестве активирующих добавок используются редкоземельные элементы (неодим, иттербий, гадолиний, гольмий, самарий и др.), что связано с наличием у них большого числа свободных состояний. Особый интерес представляют полупроводниковые лазеры, которые имеют высокий коэффициент полезного действия (в действующих моделях он равен 70%). Принцип действия их заключается в возбуждении стимулированного излучения, сопровождающего рекомбинацию электронов и дырок в области р—п-перехода при плотности тока 700—20 ООО а/см . р—л-Переходы в первых полупроводниковых генераторах осуществлялись на основе полупроводников А В (см. гл. IX). Длина волны излучения лазера на арсениде галлия с примесью цинка и теллура оказалась 8400 А. [c.111]

    Естественно, что для создания химического лазера необходимо использовать сильно экзотермические реакции, сопровождающиеся большим выделением энергии. Но этого недостаточно. Химическая реакция, представляющая интерес для создания лазера, должна быть также достаточно быстрой и приводить к неравновесному распределению энергии. Известно, что высокая скорость особенно характерна для реакций с участием свободных атомов или радикалов, для образования которых химическую смесь следует подвергнуть ультрафиолетовому облучению, электронной бо бардировке или действию электрического тска. Однако если в результате облучения возникнет одна-едиистпенная молекула, то затраты на ее образование не окупятся энергией когерентного излучения и смысл лпмического лазера как квантового генератора пропадет. Например, при обработке молекул шестифтористого [c.100]

    Труднее всего обнаружить низкие концентрации при анализе так называемых газообразующих примесей водорода, углерода, азота и кислорода. Мешающими факторами здесь являются фон остаточных газов в источнике ионов и загрязнения поверхности образцов. Использование специальных приемов анализа (прогрев источника ионов, откачка высокопроизводительными вакуумными насосами и т. д.) позволяют снизить предел обнаружения этих элементов с помощью искрового зонда до (мол.), что иримерно соответствует возможностям других методов определения газообразующих примесей. Эти процедуры достаточно сложны, и их применение оправдано в основном полнотой анализа, так как одновременно с газообразующими примесями определяются и другие элементы. Но существуют и специальные масс-спектрометрические методы для анализа газообразующих примесей с помощью электронного либо лазерного зонда. В последнем случае применяют лазер, работающий в режиме свободной генерации. Он служит для испарения вещества (атомизации), а ионизацию проводят пучком электронов, как при анализе паров. [c.215]

    Возвращение электрона из возбужденного состояния (в зоне проводимости или на примесном уровне) в состояние с меньшей энергией (свободный уровень в валентной зоне либо примесный уровень) сопровождается выделением избыточной энергии в виде тепла или излучения. В зависимости от продолжительности времени между возбуждением электрона и испусканием света люминесценцию называют флуоресценцией мяи фосфоресценцией. Возбуждение может быть вызвано бомбардировкой электронами (катодолюминесценция), фотооблучением (фотолюминесценция), электрическим полем (электролюминесценция) или химической реакцией (хемилюминесценция). Так называемые фосфоры —вещества, способные к катодолюминесцен-ции, — используются для покрытия экранов электронно-лучевых трубок. Люминесцентные вещества —люминофоры — используются также в лазерах. [c.78]

    Корреляция с оптическими данными. Выцветание полосы поглощения бактериохлорофилла с центром вблизи 870 нм на свету наблюдается in vivo до 1 К. С использованием импульсного лазера показано, что выцветание происходит за время менее 1 МКС после начала вспышки квантовый выход процесса равен 0,9—1,0. Это доказывает, что компонента бактериохлорофилла, поглощающая при 870 нм, является центром первичной фотохимической реакции в бактериальном фотосинтезе. Стационарная концентрация неспаренных электронов в пределах ошибки эксперимента совпадает с концентрацией молекул бактериохлорофилла, переставших в результате освещения поглощать свет 870 нм. Кроме того, кривые нарастания и спада сигнала ЭПР и изменения оптического поглощения при 870 нм в основном совпадают. Отсюда вытекает необходимая связь между данными ЭПР и оптической спектроскопией, позволяющая идентифицировать источник светоиндуцированного сигнала ЭПР как свободный радикал, образующийся из бактериохлорофилла. [c.415]

    При использовании лазера, взрывных проволочек и дуг ионизация происходит главным образом за счет взаимодействия электронного газа с нейтральными атомами и ионами плазмы. Коэффициент ионизации зависит от потенциала ионизации, кинетической энергии электронов и распределения электронов по энергиям. Здесь область применения существенно зависит от значения электронной энергии ионизация может быть и высо-лсоселективной, как в случае слабого лазерного импульса, и универсальной, как в случае горячей и плотной дуговой плазмы. Ионизация распылением происходит на поверхности, но результирующая картина подобна свободной плазме. Природа высокочастотной искры сложна. Широкая область ее применения отражает существование многих процессов, происходящих во время высоковольтного пробоя. [c.22]

    Такие характеристики факела, как химический и физический состав, температура, давление электронного газа и скорость расширения, подвергаются значительным изменениям во времени и в пространстве и определяются главным образом процессом генерации. В идеальном случае факел должен быть квазистационарным в течение всего промежутка времени, необходимого для получения хороших спектроскопических сигналов для химического анализа. Поэтому желательно иметь факел, подобный образующемуся при постоянном дуговом разряде. Этого можно достигнуть при работе лазера либо в непрерывном, либо в импульсном режиме с малой частотой повторения, что было с успехом проделано Кёнигом и Нойманом [22]. Для получения свободных атомов в атомно-абсорбционном анализе использовался газовый аргоновый лазер. Не следует, однако, забывать, что материал образца удаляется в результате медленно протекающих процессов плавления и кипения и, следовательно, температура паров будет близка к температуре кипения материала образца. Поэтому весьма вероятно, что возникает сильное фракционное испарение. [c.84]

    Метод электронного парамагнитного резонанса (ЭПР) за тридцать лет, прошедншх со времени открытия Е. К. Завойского, превратился в один из основных пнструментов исследовапия строения вещества и кинетики различных химических процессов. Сейчас трудно найти физико-химическую лабораторию, которая не использовала бы в той или иной степени метод ЭПР. Области применения ЭПР крайне разнообразны. Здесь и исследование геометрии и конформации свободных радикалов и триплетных состояний молекул, и изучение координационного состояния парамагнитных ионов в твердых телах, и различные вопросы молекулярного движения в жидкостях и твердых телах, и проблемы электронной структуры молекул. Использование метода ЭПР открыло совершенно новые возможности в радиационно-химических исследованиях, поскольку парамагнитные состояния, в частности вободпые радикалы, являются промежуточными продуктами на одной из стадий радиационно-химического процесса. Нельзя не упомянуть ппхрокого применения метода ЭПР в биологии, в неорганической и органической химии, в гомогенном и гетерогенном пата лизе, в минералогических исследованиях и изучении материалов для твердотельных лазеров. Возможность следить за концентрацией парамагнитных частиц по интенсивности спектра ЭПР открыла новые перспективы в кинетических исследованиях, особенно в кинетике химических процессов в твердой фазе. [c.3]

    Из данных спектроскопии ЯМР и N3 следует, что молекулы воды, распределенные в гидратных оболочках противоионов, находятся в сильно иммобилизованном состоянии в обратных мицеллах аэрозоль ОТ - Н О -гептан. После завершения гидратной оболочки подвижность воды усиливается и приближается к подвижности обычной воды. Флуоресцентные зонды пирен (Р) и пиренсульфокислота (ПСК) инкубировали в обратных мицеллах и возбуждали рубиновым импульсным лазером с длиной волны 347,1 нм. С целью исследования динамики движения зонда и тушителей флуоресценции следили за затуханием возбужденного синглетного состояния зонда. В случае ионных тушителей движение оказалось весьма затрудненным при низком содержании воды. Однако тушители типа 0 или СН212 свободно диффундируют в таких системах. Константы скорости тушения флуоресценции меньше для гидрофобного зонда пирена, чем для дифильной ПСК в случае ионных тушителей. Этот факт объясняется меньшей вероятностью столкновения между тушителем и ПСК. Паносекундный импульсный радиолиз дифенила в обратных мицеллах приводит к образованию аниона и триплетного дифенила. Изучен последующий перенос электрона и энергии от этих промежуточных форм к акцепторам, локализованным в разных местах мицеллы. Показано, что заряд донора, доступность акцептора, а также микроокружение акцептора существенно влияют на эффективность этих процессов переноса. [c.354]


Смотреть страницы где упоминается термин Лазеры свободных электронах: [c.207]    [c.275]    [c.79]    [c.100]    [c.100]    [c.284]    [c.485]   
Возможности химии сегодня и завтра (1992) -- [ c.215 ]




ПОИСК





Смотрите так же термины и статьи:

Лазер

УАС-лазер лазеры



© 2025 chem21.info Реклама на сайте