Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диполь суммарный

    Диполи, изображенные на фиг. 28, представляют собой постоянные диполи. Надо указать, однако, что молекулы любых соединений, включая и типичные неполярные соединения, становятся диполями, если их поместить в электрическое поле. Это обусловлено смещением их электронов в направлении внешнего положительного полюса и таким же сдвигом ядер в направлении отрицательного полюса. Такого рода диполи, возникающие во внешнем электрическом поле, получили название индуцированных диполей. Суммарный дипольный момент молекул белков, как и дипольный момент молекул других соединений, включает в себя также момент индуцированных диполей. [c.146]


    Схема взаимодействия иона с диполем показана на рис. П. 2. Линия, соединяющая центр диполя лС ионом А, расположена под углом 0 к оси диполя. Суммарная энергия взаимодействия равна  [c.52]

    Особенностью адсорбционных взаимодействий является то, что адсорбирующаяся молекула взаимодействует не с одним центром на поверхности адсорбента (ионом, атомом или молекулой, образующими его решетку), но со многими соседними центрами. При этом суммарное взаимодействие молекулы адсорбата со всем адсорбентом, обусловленное дисперсионными силами, всегда больше взаимодействия ее с одним центром адсорбента, а суммарное электростатическое взаимодействие может быть и меньше электростатического взаимодействия с одним центром адсорбента (если, например, диполь молекулы адсорбата, притягиваемый катионом решетки, испытывает отталкивание со стороны соседних с этим катионом анионов, образующих вместе с катионами знакопеременную поверхность адсорбента). [c.438]

    Если молекула нмеет пирамидальное строение (рис. 31,6), то ее суммарный диполь-ный момент отличается от нуля — молекула полярна. Таким образом, можно сделать вывод, что молекула BF3, дипольный момент которой равен нулю, имеет плоское строение, а полярная молекула NH3 (ц, = [c.127]

    Энергия индукционного взаимодействия убывает при увеличении расстояния между молекулами и пропорциональна шестой степени величины этого расстояния. Ориентация наведенного диполя не зависит от температуры системы, а определяется лишь направлением постоянного диполя. Индукционное взаимодействие неаддитивно в отношении понижения суммарной энергии системы. [c.95]

    Если же две связи с одинаковыми р образуют угол ср, равный 180°, то суммарный электрический момент диполя равен нулю. [c.168]

    В двухатомном диполе на одном из атомов образован избыток отрицательных, на другом такой же избыток положительных зарядов. Суммарный заряд, конечно, равен нулю. У многоатомных молекул существуют некоторые области с избытками положительных и отрицательных зарядов. Однако и здесь можно представить себе два центра зарядов. [c.315]

    Аномерный эффект обусловлен взаимодействием диполя связи С)—X и суммарного диполя неподеленных пар электронов кислородного атома цикла. Отталкивание между диполями кислорода н гликозидного гидроксила сильнее для экваториального аномера, когда диполи параллельны, и слабее для аксиального аномера. [c.234]

    Следует заметить, что если суммарное дисперсионное взаимодействие молекулы адсорбтива с адсорбентом всегда больше взаимодействия ее с одним активным центром адсорбента, то суммарное электростатическое взаимодействие молекулы адсорбтива может быть и меньше ее электростатического взаимодействия с одним центром адсорбента. Такое явление можно объяснить тем, что отрицательный полюс диполя молекулы адсорбтива, притягиваемый катионом решетки адсорбента, одновременно испытывает отталкивание со стороны соседних с этим катионом анионов, образующих вместе с катионами знакопеременную поверхность адсорбента. [c.87]


    Растворитель — диэлектрик ослабляет этот процесс тем сильнее, чем больше его диэлектрическая проницаемость ер. Если молекулы растворителя поляризуются сильнее, чем растворенные ионы, то, очевидно, деформация ионных полей ведет к притяжению их к молекулам растворителя и, следовательно, к отталкиванию друг от друга. При достаточно высоких концентрациях отталкивание может преобладать над притяжением за счет кулонов-ских сил и коэффициент активности становится больше единицы, что и наблюдается в растворах с большими значениями Вр (например, в водных). Поляризация диполей растворителя ионами приводит, с одной стороны, к их ориентации вокруг ионов, что способствует уменьшению ер, а с другой стороны, ориентированные диполи растворителя сгущаются вокруг иона, образуя его сольватную оболочку, что связано с локальными повышениями давления (явление электрострикции), способствующего росту Вр. Однако это повышение суммарно значительно меньше изменения ер в сторону понижения за счет ориентационной поляризации, поэтому в конечном итоге при повышении концентрации раствора 400 [c.400]

    Суммарный момент диполя молекулы СОз равен нулю, а молекулы SO 5,38-10 ° Кл-м. Это указывает на линейное строение Oj и угловое SO . [c.118]

    В некоторых случаях удобнее рассчитать момент диполя молекулы, складывая попарно сначала все связевые (групповые) моменты, а затем все полученные векторы. Суммарный момент двух векторов вычисляется по формуле [c.208]

    Полярное вещество в отсутствие электрического поля не поляризовано, т. е. его суммарный дипольный момент равен нулю. Это связано с тем, что диполи в веществе [c.85]

    Химические связи с дипольным моментом, существенно отличным от нуля, называют полярными. Если в молекуле несколько полярных связей, то моменты диполя суммируют как векторы. В силу этого возможны случаи, когда отдельные связи в молекуле полярны, а суммарный момент диполя молекулы равен нулю (т. е. [c.88]

    Полярное вещество в отсутствие электрического поля не поляризовано, т. е. его суммарный дипольный момент равен нулю. Это связано с тем, что диполи в веществе ориентированы хаотично, т. е. любые их ориентации равновероятны. Поэтому при достаточно большом числе частиц на каждый диполь, ориентированный в [c.94]

    Рассмотрим движение ядерного диполя в магнитном поле без учета его свойств как микрочастицы, т. е. с классической точки зрения. Пусть вращающееся ядро ориентировано под углом 9 к направлению приложенного поля Яо- Это поле будет действовать на магнитное ядро так, чтобы уменьшить угол 0. Однако поскольку ядро вращается, то суммарным результатом будет то, что ядерный магнит начнет прецессировать вокруг направления магнитного поля Яо. Это поведение ядра аналогично прецессии вращающегося гироскопа, или волчка, когда он под действием силы тяжести стремится опрокинуться в гравитационном поле Земли. Угловую скорость этой прецессии со можно определить из уравнения Лармора [c.16]

    Изучение природы межмолекулярных сил, способствующих ассоциированию асфальтенов, является предметом многочисленных исследований. Обобщая имеющиеся сведения, можно объяснить стабилизацию надмолекупя1 юй структуры асфальтенов, учитьшая все виды взаимодействия, вносящие определенный вклад в суммарную энергию а) дисперсионное, которое выражается в виде обмена электронами между однотипными неполярными фрагментами и действует на очень близких расстояниях (0,3—0,4 нм) б) ориентационное, которое проявляется в виде переноса зарядов между фрагментами, содержащими диполи или гетероатомы, также относится к близкодействующим силам в) тг-взаимодействие ареновых фрагментов, формирующих блочную структуру г) радикальное взаимодействие между неспаренными электронами парамагнитных молекул д) взаимодействие за счет водородных связей между гетероатомами и водородом соседних атомов составляющих молекул е) взаимодействие функциональных групп, связанных водородными связями. [c.25]

    В линейных молекулах АВ,, треугольных АБз, тетраэдрических и квадратных АВ4 дипольиые моменты связей А—В взаимно компенсируют друг друга, так что суммарные дипольныс моменты молекул равны нулю. Подобные молекулы неполярны, несмотря на полярность отдельных связей. [c.63]

    Примером полярной многоатомной молекулы является H3 I. Поскольку углеро,т и водород имеют приблизительно одинаковые электроотрицательности. вклад трех связей С—Н в суммарный диполь молекулы должен быть пренебрежимо мал. Разность электроотрицательностей углерода и хлора, наоборот, велика, и наличие сильно полярной связи С— i [c.579]

    Особенности поляризации в полярных средах связаны с диффуэно-стью двойного слоя, проявляющейся даже при дипольной структуре межфазной границы, индуцирующей вторичные диффузные слои в глубине обеих фаз. Учет поляризационных сил особенно важен при построении физической картины злектрокоагуляции, в технологии разделения систем с полярными средами, в том числе и очистки природньгх и сточных вод. Устойчивость дисперсной системы в электрическом поле зависит от знака и величины суммарной энергии взаимодействия, обусловленной энергией молекулярного притяжения, ионно-электростатической энергией отталкивания и энергией диполь-дипольного притяжения [43].  [c.15]


    Если исходить из предположения, что дипольные моменты н-алканов связаны с концевыми С-С-связями, то в нечетных алканах диполи, направленные вдоль этих связей, дают ненулевой суммарный дипольный момшт  [c.154]

    Диполь— дипольное уширение в спектрах ЭПР. Так как неспаренный электрон обладает магнитным моментом, он должен рассматриваться как магнитный диполь, который является источником магнитного поля. Таким образом, каждая парамагнитная частица находится не только во внешнем магнитном поле, но также и в локальном поле окружающих ее других парамагнитных частиц. Если парамагнитные частицы расположены в образце беспорядочно, то величины локальных полей для разных частиц различны. Обозначим среднюю величину разброса напряженности локальных полей АЯлок. Тогда условия резонанса (IX.15) начнут выполняться при напряженности внешнего магнитного поля Явн=Яо—АЯдок. При этом частицы, находящиеся в локальном поле +АЯлок, окажутся в суммарном поле  [c.235]

    Условие резонанса будет соблюдаться до Явн=Яо+АЯлок. Частицы, находящиеся в локальном поле —АЯлок, окажутся в суммарном поле Яо = Яви—+АЯлок. Таким образом, диполь — дипольное [c.235]

    В выражение для энергии взаимодействия, обусловленного силами Ван-дер-Ваальса, кроме члена, фигурирующего в урав-ненпи (7), входят также другие слагаемые, которые учитывают взаимодействие изменяющихся квадруполей с диполями и квадруполей друг с другом. Поэтому суммарное выражение будет иметь следующий вид  [c.30]

    При взаимодействии макроскопических тел в конденсированной среде аддитивное приближение оказывается менее удовлетворительным, чем при взаимодействии в вакууме. Флуктуация заряда в объеме одного из тел индуцирует дипольные моменты не только у молекул другого тела, но и у молекул находящейся в зазоре жидкости. В свою очередь,индуцированные диполи второго тела взаимодействуют не только с первичными диполями первого тела, но и с индуцированными диполями жидкой среды, находящейся между ними [186]. В результате возникает необходимость учета влияния среды на межчастичное взаимодействие в дисперсных системах, в частности, на распространение ловдоновского поля между элементами макроскопических тел и учет конечности величины притяжения частиц средой [187]. Наличие жидкой среды уменьшает силы взаимодействия между частицами, которые в этом случае даже при сравнительно больших R не всегда являются только дисперсионными[188]. Так, резонансная энергия должна вносить существенный вклад в суммарную энергию межчастичного взаимодействия в жидкой среде, особенно если она представлена аромати- [c.99]

    Кроме рассмотренного дисперсионного взаимодействия между двумя молекулами существует также простое дипольное взaи ю-действие (Кеезом, 1915—1921 гг.) или взаимодействие индуцированных диполей (Дебай, 1920—1921 гг.), если хотя бы одна из молекул обладает постоянным дипольным моментом. И в этом случае энергия обратно пропорциональна шестой степени расстояния между молекулами, но, по-видимому, два последних взаимодействия играют очень малую роль в полном взаимодействии между конденсированными фазами, определяющем А я, так как они неаддитивны, вследствие чего их суммарный эффект сильно снижается. Поэтому при расчете A J, даже в случае сильнополярных молекул (Н2О, МНз) компонентами Кеезома и Дебая, которые превосходят лон-доновскую компоненту в энергии взаимодействия отдельных молекул, в настоящее время пренебрегают [2]. [c.171]

    Когда полярная молекула, имеющая постоянный электрический момент диполя Рпост. находится в электрическом поле (между пластинками конденсатора), то в ней возникает индуцированный (наведенный) электрический момент диполя рияд- Таким образом, суммарный (результирующий) электрический момент диполя будет составлять сумму  [c.166]

    Чтобы вычислить общий электрический момент диполя молекулы исходя из моментов отдельных связей необходимо суммировать векторы дипольных моментов связей по правилам векторной алгебры. Например, если число групповых моментов равно двум (рх и рг) и они распп. ложеНы под углом ф, то суммарный электрический момент диполя будет равен [c.168]

    Спин-спиновую связь ядер рассматривают иногда как суммарный результат трех эффектов взаимодействия ядер и электронов. Во-первых, магнитный момент ядра оказывает воздействие на электрическое поле, обусловленное орбитальным движением электронов, а это поле, в свою очередь, взаимодействует с магнитным моментом другого ядра. Во-вторых, имеет место взаимодействие магнитных диполей, в котором участвуют не только ядра, но и электроны. И, наконец, учитывая симметрию атомных s-op-биталей, надо иметь в виду отличную от нуля электронную спиновую плотность на ядрах — так называемое контактное взаимодействие Ферми. При спин-спиновой связи протонов именно это взаимодействие является наиболее важным. [c.29]

    Дипольный момент. Итак, полярную молекулу можно рассматривать как систему из двух равных по абсолютной величине, но противоположных по знаку зарядов, расположенных на определенном расстоянии друг от друга. Такие системы называются электрическими диполями. Хотя суммарный заряд диполя равен нулю, в окружающем его пространстве образуется электрическое поле, изображенное на рис. 4.30. Напряженность этого поля пропорциональна дипольному мюменту молекулы. [c.139]

    Адсорбция кислорода является необратимым процессом. Поэтому термодинамическая теория может быть использована только для малой адсорбции кислорода. Несмотря на это, из кривой заряжения и на основе адсорбционного метода можно сделать некоторые качественные выводы о характере адсорбции кислорода на электроде. В самом деле, как видно из рис. 7, в области адсорбции кислорода на электроде заряд двойного слоя начинает падать с ростом Ег- Поскольку дЕ1дд)Ау >( , то этот результат указывает на появление диполей, обращенных отрицательным концом к раствору. Этот вывод следует также из расчета вклада атомов кислорода в скачок потенциала, который проводится совершенно аналогично расчету дЕ дАц) . Образование диполей платина — кислород с отрицательным зарядом на кислороде является следствием того, что кислород оттягивает на себя электроны платины. Величина дипольного момента связи Р1—О д больше, чем связи Р1—Н д . Так, суммарный вклад атомов водорода в скачок потенциала составляет десятые доли вольта, тогда как сум- [c.79]

    В 1952 г. К. П. Мищенко подробно рассмотрел предложенные пути разделения суммарной теплоты гидратации отдельных ионов. Он считает нереальной экстраполяцию, основанную на зависимости Ягидр от Д ионов, так как сама величина Д является функцией г р. Мищенко подробно обосновал выбор в качестве основы для разделения равенство теплот гидратации ионов Сз+ и I. По Мищенко, изоэнергетичность этих ионов обусловливается тем, что различие в кристаллографических радиусах ионов компенсируется добавлением для катионов и вычитанием для анионов величины асимметрии в положении диполя молекулы воды, равной 0,025 нм. Тогда [c.158]

    Для вычисления момента диполя по аддитивной схеме можно использовать значения моментов связей или суммарные моменты групп. Момент диполя связи С—X в алифатических и ароматических производных не совпадает вследствие различий в гибридизации углеродных атомов и влияния сопряжения в ароматических соединениях. Поэтому для расчета моментов ароматических производных рекомендуется пользоваться значениями групповых моментов в монозамещенных бензолах по табл. ПХХП. В той же таблице даны групповые моменты диполя алифатических со- [c.208]

    На силанизированном силикагеле из полярного элюента наиболее слабо удерживаются полиметилбензолы, у которых метильные группы расположены рядом, в орго-положении друг к другу. В случае н-алкилбензолов конформационно подвижная н-алкиль-ная цепь вытягивается вдоль силанизированной поверхности кремнезема. Это обеспечивает наиболее сильное межмолекулярное взаимодействие с адсорбентом, а взаимодействие с полярным элюентом оказывается наименьш им. У полиметилбензолов электронная плотность распределена в кольце наиболее неравномерно и смещена к противоположной метильным группам части бензольного кольца. Это вызывает рост суммарного электрического момента диполя молекулы и более сильное специфическое межмолекулярное взаимодействие с полярным водно-спиртовым элюентом. [c.312]

    Ядерные диполи хаотически распределены в образце. Суммарный (макроскопический) магнитный момент образца зависит только от ориентации отдельных магнитных диполей и не зависит от их местонахождения. Поэтому можно условно свести начала всех векторов ядерных диполей в одну точку, от этого суммарный магнитный момент образца не изменится. При отсутствии внешнего магнитного поля свободные концы векторов равномерно разместятся на поверхности сферы. Приложим постоянное магнитное поле Hq. Если магнитные ядра имеют спин, равный Vj, это приведет к тому, что векторы образуют два конуса, направленные в противоположные стороны и имеющие общую вершину там, где раньше был центр сферы. Общая ось этих конусов совпадает с направлением приложенного магнитного поля Яр, а угол при вершине будет равен 109° 28 = 2 ar os Y U- Векторы равномерно заполнят поверхности обоих конусов и они будут вращаться вокруг общей оси с угловой частотой, равной частоте прецессии v [c.25]

    Пусть теперь на ядра действует переменное магнитное поле радиочастотного генератора Н , колеблющееся вдоль оси х. Это поле не имеет компонент вдоль оси у, но его можно представить как суперпозицию двух магнитных векторов, вращающихся в плоскости ху с одинаковой скоростью в противоположных направлениях с таким соотношением фаз, что они компенсируют друг друга в направлении оси у (рис. 17). Один из этих векторов вращается в том же направлении, что и пре-цессирующие ядерные магнитные диполи, тогда как другой вектор вращается в противоположном направлении. Очевидно поле, которое вращается противоположно прецессирующим ядрам, не взаимодействует с ними, потому что оно не может оставаться с ними в фазе. С другой стороны, поле, вращающееся в одном направлении с преиессирующими ядрами, может находиться в фазе, и это произойдет при совпадении частот вращения. При этом поле будет стремиться изменить ориентацию ядерных диполей, причем произойдет переход энергии вращающегося магнитного поля к ядрам с переводом их на другой конус прецессии. Этот процесс можно наблюдать у тех ядер, магнитные векторы которых отстают от вращающего поля по фазе на 90°. В результате суммарная намагниченность рассматриваемого конуса прецессии уже не будет совпадать с осью конуса, а как бы начнет вращаться с частотой прецессии вокруг этой оси, т. е. вокруг направления поля Яо (рис. 18), что приведет к появлению вращающихся компонент намагниченности в направлениях х у. Переменное маг нитное поле, направленное вдоль оси у, возбудит в катушке [c.49]


Смотреть страницы где упоминается термин Диполь суммарный: [c.114]    [c.423]    [c.125]    [c.88]    [c.44]    [c.159]    [c.175]    [c.176]    [c.104]    [c.31]    [c.27]    [c.31]    [c.119]    [c.205]   
Курс общей химии (1964) -- [ c.63 ]




ПОИСК





Смотрите так же термины и статьи:

Диполь



© 2025 chem21.info Реклама на сайте