Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрофоретическое влияние

    Эффект электрофоретического торможения. При наложении на раствор электрического поля ион, рассматриваемый как центральный, и его ионная атмосфера, обладающие обратными по знаку зарядами, движутся в противоположных направлениях. Поскольку ионы гидратированы, то движение центрального иона происходит не в неподвижной среде, а в среде, перемещающейся ему навстречу. Поэтому движущийся ион находится под влиянием дополнительной тормозящей силы (силы электрофоретического торможения), что приводит к снижению его скорости. [c.461]


    В качестве зарядчика целесообразно применять соли с катионами Mg2+, Ре +, А1 +, а противоионом может служить анион КЮз . Регулировать толщину, плотность и равномерность осадка можно, меняя параметры электрофоретического осаждения, напряжение электрического поля, время осаждения, концентрацию и дисперсность твердой фазы металлического порошка. Наибольшее влияние из указанных факторов оказывает напряжение электрического поля, приводящего к сближению и коагуляции частиц. [c.84]

    Цель работы определение электрокинетического потенциала дисперсных систем электрофоретическим методом исследование влияния состава дисперсионной среды на -потенциал. [c.93]

    Этот вывод и некоторые другие соображения, также говорящие в пользу зависимости подвижности от радиуса (влияние релаксации ионных атмосфер), все еще нельзя считать полностью подтвержденными экспериментально. Фрейндлих и Абрамсон (1927—1928 гг.) показали, что электрофоретическая подвижность частиц суспензий кварца и других веществ, покрытых адсорбированным яичным альбумином, не зависит от их размеров. Так как использовавшиеся при этом частицы были большими (>1 мкм), а толщина ионной атмосферы 1/и была мала (<10 см), то условие кг > 1 было выполнено и независимость от г объяснима. Однако Овербек в 1950 г. установил, что подвижность макромолекул яичного альбумина г = 2-10 см) та же, что и у больших частиц, покрытых альбумином, а это уже противоречит требованиям теории. В то же время Муни в 1924 г. нашел, что электрофоретическая подвижность мелких капель масла зависит от их величины. [c.140]

    Согласно уравнениям (1.64) — (1.70) коэффициенты диффузии не должны зависеть от концентрации. Однако экспериментальные данные показывают, что с увеличением концентрации величины коэффициентов диффузии сначала падают, а затем начинают возрастать. Такое влияние концентрации объясняется проявлением сил взаимодействия между ионами, а также сольватационными эффектами. Особенность их проявления выражается в том, что центральный ион и его ионная атмосфера в диффузионных процессах перемещаются в одном направлении. В связи с этим они должны рассматриваться как своего рода ионный двойник с расстоянием между частицами 1/Х, а для оценки влияния электрофоретического и релаксационного тормозящих эффектов следует применять критерии, отличающиеся от рассмотренных при изучении электропроводности. [c.44]

    Как уже было сказано, уравнение (VI. ) было выведено при условии стационарного режима, т. е. равенства электрической силы, действующей на частицу, и силы трения. Следует, однако, учитывать, что иа движение частицы в электрическом поле оказывают влияние эффекты электрофоретического торможения и электрической релаксации, которые не учитываются классической теорией Смолуховского. [c.97]


    При выводе этого уравнения коллоидная частица принята эквивалентной сферической частице и введена поправка на так называемое электрофоретическое запаздывание (торможение), вызванное влиянием внешнего поля на двойной электрический слой. Под действием, этого, поля противоионы передвигаются в направлении, противоположном движению частицы, сообщая.этим самым движение окружающей жидкости в том же направлении. Это приводит к тому, что частица перемещается не в покоящейся, а в движущейся жидкости, в результате чего электрофоретическая скорость уменьшается. [c.203]

    Он выполняется следующим образом. На середину полоски плотной, гомогенной фильтровальной (хроматографической) бумаги, пропитанной буферным раствором с определенным значением pH, наносят каплю исследуемого коллоидного раствора. Затем на полоску бумаги накладывают разность потенциалов. Под влиянием образующегося электрического поля отдельные компоненты, содержащиеся в капле, обладающие разными электрофоретическими подвижностями, передвигаются по полоске с различными скоростями. Через некоторое время компоненты распределяются на бумаге в виде стольких зон, различно удаленных от исходной точки, сколько компонентов содержалось в растворе. Полоску высушивают и прогревают для денатурации и фиксации находящихся на ней белков и после этого окрашивают подходящими красителями. В результате проявляется распределение компонентов по длине полоски. Роль бумаги в этом методе сводится к устранению диффузионного и конвекционного перемешивания белков при электрофорезе. [c.210]

    Высокая частота и высокое напряжение тока влияют на электропроводность гидрозолей аналогично тому, как они влияют на электропроводность обычных электролитов. Однако для коллоидных систем это влияние сказывается более резко, поскольку оно связано с электрофоретическим запаздыванием и электрической релаксацией, эффект которых проявляется особенно сильно у частиц коллоидных размеров. [c.221]

    Недостатки теории Дебая — Гюккеля — Онзагера связаны с несовершенствами и ограниченностью ее теоретических допущений, рассматривающих лишь электростатическое взаимодействие ионов и усредненное влияние окружающей среды. В современных теориях концентрированных растворов электролитов, кроме образования различных ассоциатов, учитываются сольватация ионов и их конечные размеры, асимметричность распределения концентрации в движущейся ионной атмосфере, локальные изменения вязкости вблизи ионов, взаимодействие электрофоретического и релаксационного торможения и другие эффекты. Очевидно, что уточненные исследования растворов электролитов возможны лишь с учетом всей сложности их строения и разнообразных взаимодействий. [c.225]

    Результаты тех опытов, которые были проведены у нас на кафедре коллоидной химии И. Ф. Карповой для суспензии стеклянных шариков, полученных при продувании стеклянной пыли через кислородно-ацетиленовое пламя, показали также влияние размеров частиц на электрофоретическую подвижность. Исправление полученных величин путем введения коэффициента 6я в расчетную формулу для -потенциала видно из табл. 15. [c.130]

    Кроме значительного числа работ, в которых исследовалось влияние различных неорганических солей на -потенциал, появляются исследования по изучению влияния добавок органических веществ к водным растворам и среди них — поверхностноактивных веществ. В этих работах выясняется целый ряд характерных особенностей, отличных от полученных с неорганическими солями. Из исследований, проведенных в этой области, следует указать прежде всего на работу Мак-Таггарта, опубликованную в 1914 г. Этот автор провел исследование электрофоретической скорости пузырьков воздуха в растворах кислот и спиртов алифатического ряда в зависимости от их концентрации. Полученные им результаты показали, что небольшие добавки кислот и спиртов вызывают значительное уменьшение электрофоретической скорости, которая при увеличении концентрации возрастает и далее вновь понижается. Таким образом, кривая [c.159]

Рис. 102. Влияние качества олеата натрия на электрофоретическую скорость капелек масла. Рис. 102. <a href="/info/424591">Влияние качества</a> <a href="/info/73154">олеата натрия</a> на <a href="/info/774917">электрофоретическую скорость</a> капелек масла.
    Под влиянием приложенной разности потенциалов положительный ион движется к отрицательному электроду, а некоторый объем жидкости, окружающий ион и заряженный отрицательно, движется к поло/кительному электроду. Следовательно, ионы движутся в среде, перемещающейся в противоположном направлении. Это движение жидкости, которая непосредственно прилегает к иону, подобно движению жидкости в электрофоретических процессах. Известно, что жидкость в тонких капиллярах под влиянием приложенной разности потенциалов движется потому, что несет на себе электрический заряд. Коллоидные частицы движутся под влиянием разности потенциалов потому, что на границе между частицами и раствором возникает электрокинетический потенциал. Здесь наблюдается подобное же явление. При стационарном движении иона ир = геН. При более строгом рассмотрении следует учесть, что жидкость, окружающая ион, движется в противоположном направлении со скоростью Ау. Так как заряд ионной атмосферы равен заряду иона, исправленное выражение может быть записано так  [c.92]


    НОМ порошке, порошке поливинилхлорида и т. д., и главным образом на целлюлозе. Электрофоретический метод разделения имеет особое значение для разделения коллоидов и аминокислот, так как заряд частиц этих соединений зависит от значения pH среды. Поэтому значение pH раствора (изо-электрическая точка) оказывает большое влияние на направление движения ионов в растворе. Процесс электрофореза проводят часто в присутствии буферных растворов. Согласно уравнению (7.1.29), состав раствора оказывает большое влияние на скорость движения частиц в растворе. Движению частиц в электрическом поле препятствует явление диффузии. Влияние диффузии обратно пропорционально размерам частиц и силе поля. Для разделения ионов больших размеров можно применять электрофорез при низком напряжении, для разделения частиц небольших размеров следует работать при более высоких напряжениях. Электрофорез на носителе по технике выполнения проще, чем обычный электрофорез. При этом вещества в соответствии со скоростями их движения в электрическом поле фракционно осаждаются на носителе. Используя сорбционное действие носителя, можно замедлить движение частиц, что приведет к расширению зон фракционирования. Под действием выделяемого током тепла, особенно при работе с высокими напряжениями, происходит испарение растворителя, что затрудняет процесс разделения. Важным фактором является удаление перед разделением больших количеств электролитов, например, в процессе диализа. [c.387]

    В последующих исследованиях ряда авторов (Дж. Овербек, Ф. Буф, Д. Генри, С. С. Духин) рассмотрено влияние деформации двойного слоя при наложении внешнего электрического поля (эффекта релаксации) на скорость электрофоретического движения частиц оказалось, например, что при значениях хг, близких к единице, в присутствии трехзарядного противоиона деформация двойного электрического слоя вызывает уменьшение коэффициента k примерно на одну четверть. Все эти поправки должны учитываться при определении -потенциала методом электрофореза. [c.193]

    В основе работы электрофильтров лежит электрофоретическое движение частиц пыли в электрическом поле высокого напряжения (до 200 тыс. в). Электрофильтры представляют собой трубчатое устройство с коническим днищем — бункером и металлической проволокой в центре. Стенки фильтра соединены с положительным, а проволока— с отрицательным полюсом источника тока. Под влиянием электрического поля происходит ионизация газа при этом частички пыли заряжаются отрицательно, устремляются к стенкам трубы, где теряют заряд и осыпаются в бункер. [c.368]

    Не рассматривая подробно влияние электрической релаксации на скорость электрофореза, отметим лишь, что, согласно Овербеку, эффект релаксации зависит от С-потенциала, величины на и от валентности ионов электролитов, присутствующих в системе. На рис. VII, 22 в качестве иллюстрации показано влияние электрической релаксации для сферических коллоидных частиц с отрицательным 5-потенциалом, равным 50 мВ, и различных типов электролитов. На оси абсцисс отложены значения на, а на оси ординат — значения величины /, на которую следует умножить скорость электрофоретического переноса, вычисленную по уравнению Гюккеля (VII, 47), чтобы получить правильные результаты. Пунктирной линией показана кривая, характеризующая изменение скорости, вычисленной по уравнению Генри без учета релаксации. [c.205]

    Из изложенного выше ясно, что определение электрокинетического потенциала сопряжено со многими трудностями, связанными как с постановкой эксперимента, так и с вычислением -потенциала по экспериментальным данным. Еще сравнительно недавно исследователи не учитывали влияния поверхностной проводимости, "электрофоретического запаздывания и электрической релаксации, и поэтому из большого числа- исследований в области электрокинетических явлений лишь немногие давали достоверные значения -потенциала. [c.217]

    При изучении влияния катионов различной валентности на электрокинетический потенциал латексных глобул было установлено, что для латексов с отрицательно заряженными частицами соблюдается правило Шульце—Гарди, которому подчиняются лиофобные коллоидные системы. На рис. XII. 8 приведены результаты электрофоретических исследований диализованного синтетического латекса, содержащего 1% сухого остатка. Последние точки на кривой, отмеченные стрелками, соответствуют предельной концентрации электролита, при которой еще можно провести электрофорез. [c.384]

    Кроме силы электрического поля, на движение ионов решаюш,ее влияние оказывают сопротивление среды, форма самих ионов и их гидратация. Количественная оценка этих факторов не входит в рамки этой главы. Однако необходимо иметь в виду, что воспроизведение электрофоретического разделения возможно лишь в тех случаях, когда строго соблюдаются все условия опыта (сила тока, напряжение, среда, в которой проходит разделение, концентрация веш,ества, температура, продолжительность опыта, ионная сила, качество применяемого буфера и т. д.). [c.529]

    Метод капиллярного электрофореза также используется в /х-СПА-устройствах. Проба и буферный раствор вводятся в капилляр. При создании разности потенциалов на концах капилляра наблюдается протекание двух процессов. Первый, называемый электрофоретическим разделением, представляет собой движение положительно или отрицательно заряженных индивидуальных ионов в жидкости под влиянием приложенного поля. Второй процесс называется электро-осмотическим переносом и приводит к движению всей жидкости в капилляре. Реализация этого процесса обусловлена существованием двойного электрического слоя (слоя Гельмгольца) вблизи стенок капилляра. Этот слой образован неподвижными отрицательными зарядами на стенках капилляра (ионизированные силанольные группы) и положительно заряженными ионами из жидкости, которые притягиваются отрицательными зарядами. Если вектор напряженности электрического поля направлен вдоль капилляра, то электростатические силы приводят в движение слой подвижных положительно заряженных ионов. В конечном счете, благодаря молекулярному взаимодействию между слоями жидкости (вязкость жидкости), вся жидкость в капилляре приходит в движение. [c.646]

    При пассивном мембранном транспорте структурная опосредо-ванность действия может проявляться, по-видимому, по-разному для разных его типов. Так, канальный транспорт, как известно, в сильной степени зависит от энергетического профиля канала, который, в свою очередь, определяется его структурными особенностями. Изменение структурного состояния канальных белков под влиянием Е на мембране (прямым или косвенным) должно привести к изменению его энергетического профиля. В результате может увеличиться или уменьшиться интенсивность транспорта через канал. Интересно, что при этом следует ожидать также иных условий и для непосредственного электрофоретического влияния на передвижение заряженных частиц в канале [231]. [c.75]

    Электропроводность сильных электролитов. Рассмотрим, чем обусловливается изменение эквивалентной электропро-водностй растворов сильных электролитов при изменении концентрации. Вследствие того, что число ионов для объема раствора, содержащего 1 г-экв данного электролита, при этом не меняется, изменение эквивалентной электропроводности с концентрацией вызывается только изменением скорости перемещения ионов. При данном градиенте внешнего поля эта скорость зависит лишь от сил, тормозящих перемещение ионов. Важнейшими из них являются влияние релаксации ионной атмосферы, электрофоретический эффект и силы трения. Рассмотрим лишь первые два из них, так как действие трения не нуждается в пояснении. [c.410]

    Для каждой аминокислот1з1 характерна своя величина рТ, которая определяется строением боковой цепи К (ср. табл. 20). Вследствие этого в буферном растворе с постоянным pH разные аминокислоты несут неодинаковые по величине (а иногда — и по знаку) заряды, что сказывается на скорости и направлении их движения в электрическом поле. Это явление используется для электрофоретического разделения аминокислот на бумаге или на крахмале (электрофорез на носителях). Различия в зарядах аминокислот оказывают также влияние на их способность обмениваться с другими ионами. В сочетании с эффектом [c.350]

    Электрофорез [1—3]. Движение заряженных частиц под влиянием внешнего электрического поля и находящихся во взвешенном состоянии в неподвижной жидкости называется электрофорезом. Это явление можно представить себе следующим образом. Частицы жидкости окружены двойным электрическим слоем. При приложении электрического поля распределение зарядов частиц в дуффузном слое нарушается вследствие смещения их по отношению к частице и непрерывного обмена ионными атмосферами вокруг частиц. В то же время сами частицы под действием электрического поля движутся по направлению противоположно заряженного полюса. Измерив скорость движения частиц и зная градиент потенциала приложенногс электрического поля, можно рассчитать электрофоретическую подвижность частиц С/эф (так назьшают путь, проходимый частицей за одну секунду в поле с градиентом потенциала 1 в/см). Тогда [c.168]

    В работе Д. А. Фридрихсберга и Се Юань-цай исследовался процесс обезвоживания и обогащения глиняной суспензии электрофорезом (на примере кембрийской глины). Процесс проводился в латунной ванне с продольным потоком суспензии глины вдоль оси вала — свинцового анода. Исследовалось влияние ряда параметров, определяющих эффективность процесса электрофоретического осаждения глины (скорости подачи и концентрации суспензии, электропроводности пульпы и др.). Было установлено, что для 20% суспензии можно ожидать выхода очищенной глины, содержащей 30—457о воды, около 1,4 г в сутки на 1 м анода (при расходе электроэнергии 75—120 квт-ч/т). [c.195]

    Изучено влияние состава этанольных растворов бромидов Ка, К, Сз на электропроводность суспензий синтетического алмаза и электрофоретическую подвижность его частиц. Вычисленные по теории Вагнера зависимости удельной поверхностной проводимости алмаза от концентрации электролитов использованы для расчетов - потенциала теории Генри. Показано, что отрицательные значения монтонно уменьшаются с ростом концентрации электролитов в отличие от соответствующих экстремальных зависимостей и. [c.108]

    С. С. Воюцкий и Р. М. Панич еще в начале пятидесятых годов исследовали влияние на устойчивость и одновременно на -потенциал латексов таких факто ров, как крнцентрация латексов, pH среды и валентность коагулирующего иона. Исследования проводили как с недиализованными, так и диализованными син-тетическми латексами, стабилизованными олеатом и нафтенатом аммония. Электрофоретическую подвижность определяли с помощью макроэлектрофореза, поскольку в задачу работы входило определение зависимости -потенциала от концентрации дисперсной фазы. Электрокинетический потенциал вычисляли по форму.те Генри, причем численный коэффициент подбирали в соответствии с известным критерием ка, пользуясь графиками Овербека. [c.382]

    Электропроводность коллоидного раствора слагается из электропроводности, обусловленной коллоидными частицами, и электропроводности находящихся в растворе электролитов. Если посторонних электролитов в растворе очень мало (высокоочищенные растворы белков и полиэлектролитов), измерениями электропроводности можно воспользоваться для определения удельного заряда или подвижности частиц, однако, в лиофобных золях определить собственную электропроводность коллоидных частиц довольно трудно. Существенное влияние на собственную электропроводность частиц оказывает структура двойного электрического слоя, так как подвижность компенсирующих ионов ограничивается электрофоретическим торможением со стороны коллоидных частиц (более медленно передвигающихся в поле, чем ионы) и скоростью перестройки ионной атмосферы в переменном поле (эффект релаксации). В свою очередь, измерениями электропроводности в широком диапазоне частот (дисперсия электропроводности) пользуются при изучении структуры двойного слоя. В растворах полиэлектролитов (например, полиакриловой кислоты) измерения эквивалентной электропроводности X при различных концентрациях представляют интерес для характеристики формы молекул, так как значения X падают в той области концентраций, в которой расстояния между молекулами полимера становятся велики по сравнению с толщиной двойного электрического слоя (Каргин). Измерения электропроводности коллоидных растворов при их взаимодействии с нейтральными солями (метод кондуктометриче-ского титрования) широко применялись при исследовании состава двойного слоя и процессов вытеснения из коллоидных частиц, например, подвижных Н+-ионов (Паули, Рабинович). [c.131]

    Наряду с КЗЭ, при котором удается осуществить разделение только за счет разницы в подвижности, и который в настоящее время представляет собой наиболее распространенный метод, выделяют также капиллярный гель электрофорез (КГЭ) с капилляром, заполненным гелем. При этом на электрофоретическую миграцию молекул оказывает влияние матрица геля, и поэтому достигается селективное разделение молекул по размерам. Незаряженные молекулы можно разделять с помощью мицеллярной электрокинетической хроматографии (МЭКХ). В данном случае к буферу добавляется детергент, и нейтральные молекулы распределяются между буфером и мицеллами в соответствии с их гидрофобностью. Разделение основано на подвижности мицелл, заряженных в большинстве случаев отрицательно. Поскольку в основе разделения лежит процесс распределения, можно с полным основанием говорить о хроматографическом методе. При изоэлектрической фокусировке (ИЭФ) происходит разделение в градиенте pH, формируемом добавлением амфолита к буферу в электрическом поле. Небольшое распространение получила пока электрохроматография (ЭХ), при которой применяется стационарная среда ВЭЖХ, а течение эдюента и перенос пробы происходит только за счет электроосмотического потока. В качестве самой старой капиллярной техники следует упомянуть изотахофорез (ИТФ), который в настоящее время вновь приобрел значение для концентрирования проб в КЭ. [c.7]


Смотреть страницы где упоминается термин Электрофоретическое влияние: [c.191]    [c.85]    [c.84]    [c.85]    [c.153]    [c.173]    [c.382]    [c.91]    [c.109]    [c.22]    [c.118]   
Явления переноса в водных растворах (1976) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Электрофоретические



© 2025 chem21.info Реклама на сайте