Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакционная катионов

    Образование орто-пара-изомера дифенилолпропана можно также представить путем замещения водорода, находящегося в ортоположении к гидроксильной группе в молекуле фенола, катионом п-изопропенилфенола IV. Содержание этого изомера в побочных продуктах колеблется в зависимости от условий реакции и в некоторых случаях превышает 50%. При изучении равновесия между дифенилолпропаном и его орто-пара-изомером было найдено , что первоначально в реакционной массе содержание орто-пара-изоме-ра выше. При выдерживании смеси при этой же температуре его концентрация снижается, в то время как количество дифенилолпропана увеличивается. По-видимому, дифенилолпропан отличается большей стабильностью. Реакция идет с одновременным образованием обоих изомеров, а затем часть орто-пара-изомера превращается в дифенилолпропан до наступления равновесия. Вывод относительно одновременного образования этих двух изомеров согласуется с приведенной выше схемой их образования. [c.91]


    Важнейшей отличительной особенностью полибутадиенов, образующихся при катионной полимеризации, является их низкая непредельность (30—70% от теоретической), наблюдаемая уже в начальной стадии процесса. Специфический характер вторичных реакций при катионной полимеризации объясняется тем, что активность внутренних двойных связен полимерной цепи по отношению к реакционному центру соизмерима с активностью мономера. На любой стадии процесса полимеризации протекает реакция внутримолекулярной циклизации, сопровождающаяся падением непре-дельности полимера [13]  [c.178]

    Рнс. 65. Реакционный узел для гидратации пропилена на сульфо катионите. [c.194]

    Высокая реакционная способность н-бутил-катиона приводит к образованию в алкилате н-бутилбензола, причем его содержание зависит от ряда факторов темпер атуры, природы растворителя, соотношения компонентов и т. д. [c.110]

    Реакционная среда влияет на катализатор, изменяя его состав, структуру, свойства [53]. Так, экспериментально установлено, что поверхность металлических катализаторов легко перестраивается под воздействием реакционной среды, стремясь к минимуму свободных поверхностных энергий [54]. Для большинства реакций каталитического окисления на окисных катализаторах в зависимости от состава реакционной смеси суш ественно меняется содержание кислорода и заряд катионов катализатора что приводит к изменению их активности и селективности [55]. [c.17]

    Некоторые реакции проводили в присутствии кислоты, содержащей различные модифицирующие добавки. Роль их, как полагают, заключается главным образом в изменении стабильности и, следовательно, активности образующихся промежуточных катионов. Некоторые из этих добавок ускоряли гидридный перенос в равновесном состоянии и были затем успешно использованы в промышленных процессах. Однако широкому применению добавок на промышленных установках предшествовали пилотные и заводские испытания, которые показали увеличение селективности алкилирования при перемешивании реакционной смеси и одновременное уменьшение вклада побочных реакций, ведущих к повышенному расходу кислоты. Типичные результаты этих испытаний также приведены ниже. [c.14]

    Первые результаты, полученные при контактировании изобутилена с серной кислотой [5], указывают, что он образует нерастворимые в кислоте олигомеры, главным образом Сз— ie [реакции (7а) и (11)]. Небольшие количества олигомеров, представляющих собой непредельные углеводороды, содержались также в углеводородной фазе после ее обработки раствором едкого натра при алкилировании изобутана бутеном-1 в лабораторных условиях [1]. Можно сделать вывод, что в ходе алкилирования образуется некоторое количество олефинов Са— ie, но в присутствии кислоты они ионизуются и образуют соответствующие катионы, обладающие высокой реакционной способностью подробнее это рассмотрено ниже. Из всех олефинов С4 изобутилен, безусловно, легче, чем другие, подвергается олигомеризации. [c.122]


    Для выяснения влияния набухания и снижения СОЕ катионита на его каталитическую активность набухший в различных реагентах катионит использовали как катализатор этерификации диэтиленгликоля с капроновой, энантовой и пеларгоновой кислотами. Условия реакции температура 139°С мольное соотношение глико-ли кислота 1 2, 1 количество катализатора 5% вес на загрузку компонентов. Реакцию проводили в равновесных условиях в запаянных ампулах в термостате. О ходе реакции судили по изменению кислотного числа реакционной смеси. Пример обработки результатов опыта приведен в табл. 3. [c.113]

    Таким образом, ЖГ и олигомерные смолы должны обладать повышенной реакционной способностью, носителями которой являются катионы кислот и ненасыщенные связи. [c.48]

    Подтверждение участия катиона НСО+ в реакции усматривается в отсутствии пространственных затруднений, например при взаимодействии 2,4,6-трибромбензоилхлорида с мезитиленом (а также при реакции других о,о -дизамещенных бензола). Для комплексов даже простейшей структуры, например НС0С1...А1С1з, возможность легкой реакции в этих случаях вследствие пространственных затруднений представляется исключенной. Допускается, что образование реакционного катиона R O+ идет по схеме [c.709]

    Надо отметить, что протон Н (гидрид—ион, гидрид—радикал Н ) характеризуется исключительно высокой реакционной способностью, что объясняется отсутствием у него электронной о )Олочки. Гидрид — ион — единственный катион, не имеющий электрона. Диамер Н примерно в Ю раз меньше диаметра любого другого катиона. [c.92]

    Процесс синтеза МТБЭ осуществляется в ректификационно — реакционном аппарате, состоящем из средней реакторной зоны, р<13деленной на 3 слоя катализатора, и верхней и нижней ректифи — кгщионных зон с двумя тарелками в каждой. На установке имеются дьа таких аппарата на одном из них после потери активности кг1тализатора (через 4000 часов работы) осуществляется предварительная очистка исходной сырьевой смеси от серо — и азотсодер — жащих примесей, а также для поглощения катионов железа, присутствующих в рециркулирующем метаноле вследствие коррозии оборудования. Таким образом, поочередно 1 аппарат работает в р( жиме форконтактной очистки сырья на отработанном катализа — [c.152]

    Небольшое различие в реакционной способности между цис- и транс-дихлорэтиленами в реакциях, индуцированных перекисями, в противоположность реакциям, катализируемым хлористым алюминием, свидетельствует о различной способности радикалов и катионов mpem-бутила реагировать с затрудненными (экранированными хлором) двойными связями. Все прочие различия между реакциями, индуцированными перекисями, и реакциями, катализируемыми галогенидами металлов (например, получение высоких выходов ненасыщенных хлоридов как с нормальными, так и с и.чопарафиповыми углеводородами при индуцированной перекисями конденсации, в то время как при катализируемой хлористым алюминием конденсации получаются высокие выходы пасыщенных хлоридов, но только с изопарафинами) объясняются основными правилами для реакций свободных радикалов и ионов карбония. [c.233]

    Изобутан можно рассматривать как особый случай. В результате реакции его с системой катион пентил-пентен в качестве промежуточного продукта будет получаться Сд. Так как это промежуточное соединение очень чувствительно к расщеплению, то при мягких условиях при таком расщсплонии образуются только С и С , а, следовательно, не увеличится количество продуктов диспропорционирования. Реакционная способность изобутана по отношению к системе катион пентил-пентен, по-видимому, близка к реакционной способности самого изопентана. Этим и объясняется, почему требуется большое количество изобутана [73] для полного подавления диспропорционирования изопентана. [c.29]

    Чтобы оказывать влияние при низких концентрациях, ингибитор должен обладать болео высокой реакционной способностью по отношению к системе катион пентил-пентен, чем сам изопентан. И, наоборот, требуемая концентрация ингибитора можот рассматриваться как мера этой реакционной способности. [c.29]

    Следы некоторых галоидалкилов нромотируют изомеризацию метилциклопентана так же, как олефины [уравнение (38)]. Например, и- и изо-пропилбромиды и втор- и т эет-бутилбромиды эффективны нри 25°. Однако никакой изомеризации не наблюдалось, когда пытались исполь зовать в качестве инициатора бромистый метил или бромистый этил [54] при той же температуре. Это отсутствие реакционной способности бромистого метила и бромистого этила было объяснено как результат возможной трудности при отрыве первичным ионом карбония атома водорода от углеводорода. Эффективность к-нропилбромида не противоречит такой интерпретации, так как, по-видимому, катионы к-пропила легко переходят в катионы изонропила. [c.44]

    Шнайдер и Кеннеди [44] сообщают, что .. . было найдено, что 2,3-димв1 ил-бутан не вступает в реакцию с изобутаиом в присутствии трет-бутилфторида и фтористого бора. Они объясняют это наблюдение тем, что изомеризация иона, образовавшегося присоединением т эет-бутил-катиона к 2,3-диметилбутену-2, не вносит изменений в скелете. Однако их экспериментальные данные показывают, что хотя 2,3-диметилбутан менее реакциониоспособен, чем 2-метилпентан, он характеризуется такой же реакционной способностью, как и 2,4-диметилпентан. [c.318]


    Когда такие факторы, как природа субстрата, нуклеофила и уходящей группы, постоянны, активация аниона зависит от растворителя, а также от природы и концентрации лиганда. Бициклические криптанды, такие, как 5, оказывают более сильное влияние, так как они в большей степени охватывают катион, образуя тем самым более стабильные комплексы. В полярных апротонных растворителях крауны обусловливают усиление диссоциации. В других системах (например, грег-бутоксид натрия в ДМСО) ионные агрегаты разрушаются в результате комплексообразования с краунами, что приводит к увеличению основности алкоксида, измеряемой скоростью отщепления протона [101]. В менее полярной среде, такой, как ТГФ или диоксан, доминирующими частицами являются ионные пары. В этом случае краун-эфиры могут благоприятствовать образованию разделенных растворителем более свободных (рыхлых) ионных пар [38, 81] с более высокой реакционной способностью [102]. Даже в гидроксилсодержащих растворителях при добавлении краунов наблюдаются удивительные эффекты, так как изменяются структура и состав сольватной оболочки вокруг ионной пары и ионные агрегаты частично разрушаются. Например, сильно изменяется соотношение син1 анти-изомеров при элиминировании, катализируемом основаниями [103]. [c.40]

    Выделение липофильных катализаторов (например, аликвата 336 или С1бНззРВизВг) из неполярных растворителей не всегда проходит легко (см. также [1801]). Часто продукт реакции можно отогнать или отделить перекристаллизацией. По новой методике реакционную смесь после завершения реакции встряхивают с ионообменной смолой (Н-форма) при комнатной температуре. Смола захватывает катион, который может быть регенерирован промывкой водно-этанольным раствором H I [1499]. [c.93]

    Рециркуляция также нащла широкое применение в процессах выпаривания, адсорбции, сушки, экстракции, кристаллизации, в ионообменных процессах (например, при получении калиевой селитры на катионите КУ-1, что позволяет получать высококонцентрированные растворы нитратов. Широко распространена рециркуляция в аппаратах с псевдоожиженным слоем. Рециркуляция является эффективным средством теплосъема и поэтому позволяет осуществлять в промышленности реакции, протекающие с большим выделением тепла. В случае применения рецикла по жидкой фазе в трехфазных реакторах с суспендированным катализатором, кроме теплосъема, рециклический поток улучшает условия распределения катализатора в реакционном объеме. [c.290]

    Большое значение оказывают количество и активность катализатора, При небольших количествах катализатора и мягких условиях образуются в значительной,степени орто- и пара-то-меры. С увеличением количества катализатора возрастает содержание мета-томера. Кроме того, образование лега-изомера при мягких условиях наблюдается при высокой реакционной способности и низкой избирательности карбокатионов. В присутствии больших количеств катализатора ароматические углеводороды почти количественно превращаются в 1,3-диалкил- и 1,3,5-триалкилбензолы, что объясняется их большой основностью и соответственно стабильностью соответствующих сг-комплексов. Многочисленными примерами показано, что чем выше энергия у реагента (больше дефицит электронов), тем меньше его селективность как при атаке различных по основности ароматических углеводородов, так и отдельных положений монозамещенных ароматических соединений. Например, молекулярный бром (слабая кислота Льюиса) реагирует с толуолом в 600 раз быстрее, чем с бензолом, тогда как бром-катион из гипобромида (сильная кислота Льюиса) лишь в 36 раз. Подобный же эффект наблюдается для этих реагентов и при атаке различных положений толуола. В табл. 2.4 приведены факторы парциальных скоростей нитрования и галогенированЕя толуола и трет-бутилбензола. [c.42]

    Следует, однако, отметить, что делать априорГный расчет состава продуктов алкилирования на основе только стабильности карбокатионов нельзя, так как важную роль имеют и кинетические факторы, которые вносят значительные коррективы в направленность протекания реакции. Например, в соответствии с термодинамическими данными, пропилхлорид должен преимущественно превращаться в более стабильный изопропил-катион, который при атаке бензола должен давать изопропилбензол. Образование значительных количеств пропилбензола при алкилировании бензола этим агентом в присутствии А1С1з можно объяснить тем, что пер ичный алкил-катион в силу своей высокой реакционной способности присоединяется к ароматическому ядру раньше, чем произойдет его перегруппировка. [c.109]

    На основании зависимости скорости реакции внутримолекулярного алкилирования фенилалкилхЛоридов [183] от расстояния между фенильным радикалом и реакционным центром, авторы работы [171] считают, что поскольку стабилизация заряда в углеводороде VIII за счет ароматического ядра затруднена, электронный дефицит катионного центра снижается за счет взаимодействия с метиленовой группой, увеличивая тем самым в ней дейтерообмен. В углеводороде IX ароматическое ядро участвует в делокализации заряда и в первую очередь дейтерообмен происходит в этом центре, хотя его степень за счет участия фенильного ядра несколько падает. [c.126]

    Все природные и большинство синтетических цеолитов представляют собой алюмосиликаты. Наибольшее значение в катализе имеют кристаллические алюмосиликатные цеолиты типа А, X, У и другие, с прочным трехмерным скелетом [215]. Общую формулу цеолитов можно представить в виде Мг/пО-АЬОз- сЗЮг-г/НгО, где п — валентность металлического катиона М л — мольное соотношение ЗЮг АЬОа у — число молей воды. Величина х в значительной степени определяет структуру и свойства цеолитов. В цеолите типа А X близок к 2 в цеолитах типа X — изменяется от 2,2 до 3 У — от 3,1 до 5,0 в синтетическом мордените достигает 10. Для каталитических процессов используют цеолиты с х = 2,8—6,0 [215, 216]. При различных условиях синтеза цеолитньус катализаторов (химический состав кристаллизуемой массы, параметры кристаллизации, природу катиона) можно в широких пределах изменять величину X [217, 218]. Так, низкокремнистые катализаторы (х = = 1,9—2,8) синтезируют в сильно щелочной среде, а в качестве источника кремнезема используют силикат натрия. Для получения высококремнистых цеолитов применяют более реакционно-способные золи или гели кремневой кислоты, а синтез проводят в менее щелочной среде [219]. [c.172]

    При анаэробном брожении в итоге ферментативного расщепления гексоз до осколков, содержащих три углеродных атома, возникают многообразные конечные продукты. Распад глюкозы (после ее фосфорилирования) с образованием фосфодиоксиацетона и фосфоглицеринового альдегида осуществляет фермент альдолаза (зимогексаза, альдегид-лиаза), которая активируется ионами двухвалентных металлов [69]. В состав альдолазы входит цинк и в очень малых количествах железо и марганец [72]. Добавление к реакционной системе хелатирующего агента, связывающего катионы (например, этилендиаминтетрауксусной кислоты), ингибирует альдолазу. Активность ингибированного таким образом фермента восстанавливается при добавлении в систему ионов Zn +, Ре , Со +, Мп-+. Можно предположить, что эти ионы участвуют в про- [c.94]

    Ранее было установлено [126, 13], что на процесс алкилирования влияет присутствие в реакционной смесн кислоторастворимых углеводородов, обычно называемых темным остатком или высоконенасыщенными полимерами. Считается, что в этом темно.м остатке присутствует смесь насыщенных и ненасыщенных карбкатионов, которые могут выступать в качестве промежуточных форм при переносе гидрид-ионов от молекулы йзобутана к алкильным катионам. Если предположить, что перенос гидрид-иона является лимитирующей стадией, то этому процессу, вероятно, будут способствовать увеличение скорости и повышение селективности алкилирования в целом. Настоящая работа посвящена исследованиям катионоактивных веществ, успешно используемых для этих целей на промышленных установках. [c.14]

    Эта схема подтверждается присутствием н-бутиленов в реакционных газах и сходством состава продуктов, полученных в случае этилена и н-бутиленов в присутствии цеолита СаМеУ (табл. 3). Активность проявляли катионы никеля, хрома и кобальта. Результаты, данные в табл. 3 и 4, получены с использованием никеля. [c.85]

    Асфальтолы могут служить исходными продуктами для последующих синтезов. Их реакционная способность обусловлена и фенольными группами и незамещенными и пространственно доступными положениями циклической части молекулы. Так, сульфированием асфальтолов можно получить катионит с СОЕ до 5 мэкв/г. [c.295]

    Фирма Токиута 5о(1а предлагает удалять хлорид-ион С1" и Н из водных растворов при хлоргидринировании олефинов путем электродиализа реакционной массы с применением катионо- и анионообменных мембран [105], [c.29]

    Наиболее заметно различие меж-,. ,у радикальными, анионными и катионными процессами в реакциях совместной полимеризации. В первую очередь оно проявляется в разном составе сополимеров, полученных по этим трем. методам, что объясняется различной реакционной способностью одних и тех же мономеров в реакциях роста при ради-ка, 1ьной и ионной сополимеризации. [c.151]

    Депротонирование катиона 42 маловероятно. Действительно, особенностн строения кар-бокатиона 41 таковы, что оксониевый ион ориентирован аксиально, как это показано на проекции О. С увеличением размера образующегося при стабилизации цикла в катионе 42 оксонне-выи ион может занимать более выгодное экваториальное положение (проекция Е). В этом случае выгодная для депротонирования транс-диаксиальная ориентация оксониевого иона и протона отсутствует Поэтому катион 42 должен стабилизироваться присоединением нуклеофилов Однако продуктов подобных превращений в реакционной смеси не обнаружено, что может быть обусловлено преимущественной стабилизацией катиона 40 в виде 41. [c.21]


Смотреть страницы где упоминается термин Реакционная катионов: [c.92]    [c.105]    [c.59]    [c.164]    [c.124]    [c.98]    [c.108]    [c.120]    [c.139]    [c.142]    [c.143]    [c.218]    [c.121]    [c.153]    [c.71]    [c.72]    [c.74]    [c.28]    [c.152]    [c.21]   
Межфазный катализ в органическом синтезе (1980) -- [ c.291 ]




ПОИСК







© 2025 chem21.info Реклама на сайте