Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбид титана средах

    Титан — один из наиболее легких -металлов. Все металлы ГУБ группы необычайно устойчивы к коррозии. В растворах титан (IV) и цирконий (IV) существуют в виде гидратированных ионов (Т10)2+ и (2гО)2+. Гидроксиды Т1 (IV) похожи на гидри-ксиды 5п (IV). Все производные Т1 (IV) и 7г (IV) в воде гидролизуются. Гафний в растворах существует в основном в виде ионов Н1 +. Соединения Т1 (IV) в кислой среде можно перевести в соединения со степенью окисления +3. Существуют ионы состава [Т1(Н20)б] +. Важнейшими соединениями элементов 1УБ являются галогениды, оксиды, карбиды. [c.517]


    На определенном расстоянии по обе стороны сварного шва находятся области, нагревающиеся до критических температур. Здесь по границам зерен пересыщенного аустенита выделяются карбиды, богатые хромом. В результате того что устойчивость по границам зерен уменьшается, в агрессивных средах идет межкристаллитная коррозия. Образование карбидов зависит не только от температуры, но и от продолжительности ее воздействия. Влияние этих факторов определяется химическим составом основного материала и его структурой. Для сварки непригодны стали, при нагревании которых в области критических температур по границам зерен образуется карбид хрома. Поэтому для изготовления сварных конструкций широко применяются стали, стабилизованные титаном, ниобием или танталом, а также стали с низким содержанием углерода, при сварке которых не выделяются карбиды. В большинстве случаев их использования межкристаллитная коррозия в зонах, расположенных на определенном расстоянии от сварного шва, не наблюдается. [c.100]

    Такие металлы, как титан, тантал, молибден, цирконий,, ниобий и другие, а также ряд нитридов, карбидов, силицидов тугоплавких металлов нашли применение в некоторых отраслях промышленности. Эти металлы и их сплавы обладают ценными физическими и химическими свойствами и значительной коррозионной устойчивостью в сильноагрессивных средах, которая в некоторых случаях превосходит устойчивость нержавеющих сталей, платины, золота и серебра. [c.149]

    Влияние титана неоднозначно и зависит, по-видимому, от конкретной микроструктуры сплава. В мартенситно-стареющих сталях титан входит в состав интерметаллида N 3X1. В этих сталях, поведение которых при закалке отличается от поведения большинства других сталей, рассматриваемых в данном разделе, титан усиливает водородное охрупчивание [27, 28], даже если принять во внимание вероятное изменение предела текучести с повышением его содержания. В то же время в прочих ферритных и мартенситных сталях при широких изменениях концентрации титана, уровня прочности и микроструктуры наблюдалось, как правило, существенное повышение стойкости в средах, содержащих как Н2, так и НаЗ [10, 19, 20, 28, 29]. Положительное влияние титана при этом объясняли его способностью ограничивать количество остаточного аустенита, что снижает и опасность последующего образования мартенсита [28, 30]. Однако, как показывают недавние результаты, главная роль титана, если он присутствует в виде примеси замещения или в форме мелкодисперсного равномерно распределенного карбида, заключается в том, что он действует как преимуществен- [c.55]

    Элементы ЫЬ и Т1 вводят в сплав для повышения стойкости к сенсибилизации, поскольку они образуют карбиды. Однако присутствие таких добавок уменьшает стойкость против КР в хлоридных средах [66, 67, 81, 82, 89]. Установлено [94], что в малых количествах как ниобий, так и титан уменьшают ЭДУ нержавеющей стали. В то время как малые добавки титана снижают стойкость против КР [81, 82, 87], введение 2% Ti дало положительный эффект [91]. Таким образом, может существовать некоторое значение его концентрации, при котором стойкость против КР достигает минимума. Как и в случае кремния, положительное влияние больших добавок титана может быть связано со стабилизацией б-феррита. В работах [66, 91] для объяснения положительного влияния больших добавок Т1, 51, V и А1 предполагается, что уже 5%-ная объемная доля б-феррита способна вызывать притупление трещин, распространяющихся в аустените. Этот вопрос будет рассматриваться в дальнейшем, а здесь еще раз следует отметить, что титан и ниобий в таких количествах, которые заведомо остаются в растворе, отрицательно влияют на стойкость сталей. [c.73]


    Прм Титан вдвое легче стали, а титановые сплавы в три раза прочнее алюминиевых, в 5 раз прочнее магниевых сплавов и превосходят некоторые специальные стали, в то время как их плотности значительно меньще, чем последних. Поэтому титан используется как основа сплавов с А1, V, Мо, Мп, Сг, Si, Fe, Sn, Zr, Nb, Та и др. для авиационной и ракетной техники, морского судостроения. Титан является конструкционным материалом для изготовления оборудования для химической, текстильной, бумажной, пищевой промышленности, а также художественных изделий, является геттером. Фазы внедрения на основе титана и циркония (бориды, карбиды, нитриды) являются основой жаропрочных материалов, применяемых для футеровки ответственных деталей узлов и механизмов, работающих в жестких условиях в агрессивных средах. Карбиды титана в сочетании с карбидами кобальта и вольфрама применяются для получения [c.121]

    Одной из важнейших причин, ограничивающих применение высоких и сверхвысоких температур в химической технике, яв-ляется трудность подбора конструктивных материалов, устойчивых при этих температурах и одновременно к действию различных химических реагентов. Обычные углеродистые стали легко деформируются уже при температурах выше 00 °С, а пластмассы даже при температурах ниже 250 °С. Жаропрочные стали устойчивы при температурах до 700°С. Специальные сплавы железа с никелем, хромом, молибденом, кобальтом, титаном и другими тугоплавкими металлами, применяемые в химической промышленности, устойчивы до 800—900 °С. Для осуществления процессов при температурах выше 900—1000 °С в металлургии, в стекловарении, в производстве цемента, карбидов и многих других применяют неметаллические огнеупорные материалы (см. гл. XV). Наиболее распространенные огнеупоры (шамот, динас и другие) применимы для футеровки аппаратов, кладки печей, топок и т. п. при температурах не более 1400—1600 °С. Применение огнеупоров ограничено также их коррозией при действии расплавленных м-е-таллов и шлаков. При температурах до 2000 °С в основной среде используются магнезитовые огнеупоры. Графитовые изделия стойки в восстановительной среде при температурах до 3000 °С. Отсутствие доступных конструктивных материалов, стойких в различных агрессивных средах при температурах выше 1600—2000°С, является основным препятствием для осуществления многих эндотермических высокотемпературных процессов. [c.146]

    Влияние титана, ниобия, тантала. Один из распространенных способов предотвращения МКК — легирование коррозионностойких сталей карбидообразующими элементами. Наиболее устойчивые карбиды образуют титан и ниобий, а также тантал, но чаще используется стабилизация титаном и ниобием. В соответствии со стехиометрической формулой карбидов титана и ниобия для связывания углерода рекомендуется вводить титан в 5-кратном, а ниобий — в 8—11-кратном количестве по отношению к углероду. Фактическое необходимое количество титана или ниобия определяется конкретным составом стали, принятым режимом термической обработки и условиями эксплуатации (среда, температура) [1.27, с. 56—58 с. 86—90 127—133]. Специальные карбиды Ti и Nb не являются полностью нерастворимыми, их растворимость зависит от степени стабилизации, но температура их растворения значительно выше температуры растворе- [c.62]

    Имеется два метода термической обработки для предупреждения МКК — закалка, обеспечивающая полное растворение карбидов хрома или уменьшение влияния сегрегирующих примесей и стабилизирующий отжиг. Для большинства аустенитных сталей обычно принят режим закалки, состоящий в быстром охлаждении (в воде или на воздухе) после нагрева при 1020—1060 °С. Для низкоуглеродистых сталей, особенно в присутствии добавок бора и для молибденсодержащих сталей, предназначенных для работы в окислительных средах, температура закалки должна быть повышена [1.361. Стабилизирующий отжиг проводится обычно в интервале 850—950 °С при продолжительности 2—4 ч. Наиболее эффективен стабилизирующий отжиг для сталей с титаном или ниобием. В этом случае в процессе стабилизирующего отжига происходит более полное связывание углерода стабилизирующими добавками, а также образование крупных разобщенных карбидов хрома. При последующем провоцирующем нагреве не происходит опасное образование пограничных карбидов и МКК отсутствует. Стабилизирующий отжиг применим для повышения стойкости против МКК и нестабилизированных сталей, однако полное устранение склонности к МКК в этом случае невозможно из-за сохранения значительного пересыщения твердого раствора углеродом. Следует иметь в виду, что при стабилизирующем отжиге могут повышаться прочностные свойства и снижаться пластичность стали, а также могут образовываться избыточные фазы (например, сг-фаза), снижающие стойкость, особенно в окислительных средах. [c.70]

    До температуры ЗОО С при взаимодействии водородсодержащих сред используют стали 20 и ЗОХМА. При более высоких температурах нужно при-меня гь стали, легированные хромом, титаном, ванадием и др. Эти элементы дают карбиды, повышающие сопротивляемость стали обезуглероживанию. Для предотвращения водородной коррозии содержание хрома должно быть выше 6%, титана - 5С, ванадия 4С (С - содержание углерода). [c.20]


    В растворе сульфата железа в серной кислоте ни одна из сталей 26—1S не оказалась устойчивой к МКК. Неустойчивость к МКК в этом растворе, а также в азотной кислоте отмечена и для обычных ферритных нержавеющих сталей, стабилизированных титаном. Коррозия в этом случае обусловлена селективным растворением карбидов или нитридов титана в среде с высоким окислительным потенциалом. [c.167]

    В отличие от кислых, в щелочных средах практически весь прореагировавший титан карбида, в том числе и на первом тафелевском участке, находится на поверхности в виде труднорастворимых продуктов коррозии (рис. 21). [c.73]

    Известно получение тетрахлорида титана из карбида титана, хлорирование карбида начинается при температуре около 200°С. При хлорировании технического титана добавляют восстановитель (например, уголь) с целью предотвращения образования оксихлорида титана, обусловленного присутствием в исходном сырье примеси TiO. Для этого смесь титана с углем предварительно прокаливают в среде диоксида углерода. Тетрахлорид титана можно получить также действием хлористого водорода на металлический титан при температуре выше 300 °С. Наиболее распространены способы получения тетрахлорида титана хлорированием диоксида титана в присутствии восстановителей (угля, оксида углерода, фосгена). Для снижения температуры хлорирования рекомендуют добавлять хлориды или оксиды марганца, циркония, церия и других редкоземельных металлов. [c.245]

    Такие металлы, как титан, тантал, молибден, цирконий, ниобий и др., а также ряд карбидов, нитридов, силицидов тугоплавких металлов, нашли применение в машиностроении для ряда отраслей промышленности. Эти металлы и их сплавы обладают ценными физическими и механическими свойствами, а также коррозийной стойкостью в очень агрессивных средах, которая в некоторых случаях превосходит стойкость нержавеющих сталей, платины, золота, серебра и т. п. металлов. [c.23]

    Особенности конструирования элементов корпусов сосудов из аустенитных сталей. Основным технологическим приемом изготовления корпусов сосудов из аустенитных сталей является сварка. При конструировании сварных корпусов необходимо учитывать дефицитность и высокую стоимость аустенитных сталей (в 1,5— 3,9 раза дороже качественно конструкционной стали в зависимости от состава и сортамента). Из высоколегированных сталей следует изготовлять лишь те элементы корпуса, которые подвержены воздействию агрессивной среды, выполняя остальные детали из углеродистых сталей но ГОСТ 380 -71. При перегреве в процессе сварки возможно выгорание легирующих элементов и образование карбидов хрома с последую[цими потерями антикоррозионных свойств и появлением ослонности к межкристаллитной коррозии. Для исключения последней в сварных конструкциях используют аустенитные стали, дополнительно легированные титаном, который связывает карбиды хрома. [c.115]

    Факторы, влияющие на точечную коррозию. Природа металла. Отдельные металлы и сплавы в разной степени проявляют склонность к точечной коррозии. Более других подвержены точечной коррозии пассивные металлы и сплавы. В растворах хлоридов наибольшую стойкость обнаруживают тантал, титан, хром, цирконий и их сплавы весьма склонны к питтингообра--зованпю в этой среде высоколегированные хромистые и хромоникелевые сплавы. Склонность к точечной коррозии ие всегда одинакова, она зависит от химического состава стали. Чем выше в стали содержание хрома, никеля и молибдена и чем меньше углерода, тем больше ее сопротивляемость точечной коррозии. Коррозионностойкие стали тем меньше подвержены пит-тингу, чем однороднее их структура, в которой должны отсутствовать включения карбидов и других вторичных фаз, а также неметаллические фракции, в частности окислы и сульфиды, уменьшающие стабильность пассивного состояния и облегчающие разрушение пассивирующей пленки ионами хлора. Некоторые виды термообработки, приводящие к улучшению однородности стали, благоприятно сказываются на ее сопротивляемости точечной коррозии. [c.443]

    Химическая неоднородность зерен и их границ может привести к интенсивной избирательной коррозии границ зерен. Межкристаллитной коррозии в среде конденсата подвержена, в частности, аустенитная сталь 1Х14Н14В2М (ЭИ2157) лри высокой температуре. В процессе эксплуатации этой стали наблюдается диффузия углерода и хрома из тела зерна к его границам с образованием сетки карбидов по границе зерна. Скорость диффузии углерода значительно превышает скорость диффузии хрома, поэтому около границ зерен в связи с недостатком свободного хрома, входящего в твердый раствор и расходующегося 1на образование карбидов, структура стали становится ферритной. Эти участки интенсивно корродируют (рис. 2-30). Менее склонна к межкристаллитной коррозии в паровой и газовой среде сталь 1Х18НГ2Т, у которой углерод связывается не с хромом, а с титаном, оказывающим стабилизирующее действие. Аналогично титану влияет ниобий. [c.73]

    Современные твердофазные материалы исключительно многообразны по составу /И охватывают практически все элементы периодической системы. Как правило, материалы имеют сложный состав, включая три и более химических элемента. Из простых веществ в качестве материалов используют в основном алюминии, медь, углерод, кремний, германий, титан, никель, свинец, серебро, золото, тантал, молибден, платиновые металлы. Материалы на основе бинарных соединений также сравнительно немногочисленны. Среди них наиболее известны фториды, карбиды и нитриды переходных металлов, полупроводники типа халькоге-нидов цинка, кадмия и ртути, сплавы кобальта с лантаноидами, обладающие крайне высокой магнитной энергией, и сверхпровод-никовые сплавы ниобия с оловом, цирконием или титаном. Намного более распространены сложные по составу материалы. В последнее время нередко в химической литературе можно встретить твердофазные композиции, содержащие в своем составе свыше 10 химических элементов. [c.134]

    Газ для создания защитной атмосферы выбирают в зависимости от металлов, входящих в состав сплава. Часто применяют водород, однако не в тех случаях, когда присутствуют значительные количества щелочных, щелочноземельных и редкоземельных металлов, легко образующих гидриды. Применяют для этой цели и азот, за исключением тех случаев, когда среди металлов-присутствуют такие, которые образуют нитриды, как, например, литий, бериллий, магний, кальций, стронций, барий, редкоземельные металлы, актиноиды,, титан, цирконий, гафний, ванадий, ниобий и тантал. Если нет основания опасаться образования карбидов, то можно с успехом использовать и моноксид углерода, тогда как Oj и SOj при высоких температурах могут иногда оказывать на металлы окислительное действие. Инертные газы, преимущественно аргон, являются наилучшими, хотя и наиболее дорогими защитными газами. Защитный газ при высоких требованиях к его защитному действию должен быть хорошо очнщен, в особенности нежелательно присутствие в нем кислорода, даже в виде следов. Указания о способах очистки различных газов можио найти в соответствующих разделах настоящей книги [водород (гл. 1), азог (гл. 7), инертные газы]. Водород, азот и аргон высокой степени чистоты имеются в продаже или могут быть поставлены некоторыми заводами по желанию заказчика. [c.2147]

    ЖАРОСТОЙКАЯ СТАЛЬ - сталь, отличаюЕцаяся жаростойкостью. Стойка против интенсивного окисления на воздухе или в других газовых средах при т-ре выше 550° С. Используется с конца 19 в. Жаростойкость обусловлена наличием на поверхности Ж. с. плотной и тонкой пленки окислов, достаточно прочно сцепленной с осн. металлом. Пленка состоит преим. из окислов легирующих элементов — хрома, кремния и алюминия, термодинамически более стойких, чем окислы железа. Содержание этих элементов определяет класс Ж. с. (табл. 1). Хром, являясь осн. легирующим элементом Ж. с., повышает жаростойкость пропорционально увеличению его содержания (рис.). Никель способствует образованию аустенитной структуры (см. Аустенит). Стали с такой структурой легче обрабатывать, они отличаются хорошими мех. св-вами. Добавки кремния (более 2%) и алюминия (более 0,5%) ухудшают мех. св-ва стали. Титан, ниобий и тантал связывают углерод в карбиды, предотвращая выделение карбидов хрома, которое обедняет близлежащую металлическую основу хромом и приводит к уменьшению жаростойкости. Молибден и вольфрам (в небольших количествах) незначительно повышают жаростойкость, но уменьшают склонность стали к ползучести при высокой т-ре. Если молибдена содержится более 3—4%, жаростойкость стали резко ухудшается из-за образования нестойких и рыхлых его окислов. Церий и бе- [c.420]

    Мартенсит) и аустенитной основами, содержащие 1—15% V. Высокохромистые, молибденовые и ванадиевые чугуны, у к-рых содержание легирующих элементов превышает 20%, отличаются, кроме высокой абразивной износостойкости и износостойкости при сухом трении, высокой коррозионной стойкостью, а некоторые (особенно с добавками алюминия и титана) и жаростойкостью. Поэтому белые легировапные чугуны применяют для изготовления изделий, эксплуатируемых при одновременном воздействии абразивных коррозионных сред и высоких (до 700° С) т-р. В условиях сухого трения высокой износостор -костью обладают высокопрочные чугуны, в условиях трения скольжения со смазко и при граничном трении — антифрикционные чугуна. Высокопрочными чугунами, легированными медью (до 5%) и фосфором (1%), заменяют дорогостоящие бронзы, используемые в условиях граничного трения. В условиях абразивного трения применяют белые нелегированные и легированные чугуны, полученные в литом и термообработанном состоянии. Структура белых литых чугунов состоит из перлита, иногда из перлита с небольшим количеством феррита и карбидов, структура термообработанных белых чугунов — из мартенсита, аустенита и карбидов. Для восстановления изношенных стальных изделий, эксплуатируемых в условиях абразивного трения, на их поверхность наплавляют спец. легированные чугуны. Поршневые кольца двигателей внутреннего сгорания и поршневых компрессоров различного класса изготовляют в осн. из серых чугунов с повышенным содержанием фосфора, обусловливающим равномерное распределение в структуре твердой двойной и тройной фосфидной эвтектики. Для повышения износостойкости поршневых колец чугун легируют хромом, никелем, молибденом, медью, титаном и ванадием (по 0,02—0,3%), а также ниобием и танталом (до 1%). Добавки в серый чугун хрома (21—40%), сурьмы (0,01—0,3%) и [c.481]

    Таким образом, из приведенных данных следует, что в окислительных кислых средах, обеспечивающих установление достаточно положительных потенциалов коррозии (>0,6 в при 70°, рН 0), частицы карбида титана должны подвергаться селективному растворению и обусловливать снижение коррозионной стойкости сталей, стабилизированных титаном. Действительно, в ряде работ показано [107, 119, 164, 165, 176, 178], что указанные стали даже после оптимального режима закалки имеют более высокую скорость общей коррозии, чем низкоуглеродистые нестабилизирован- [c.60]

    Основной путь повышения водородоустойчивости стали заключается в выборе таких ее марок, которые содержат легирующие компоненты (хром, молибден, ванадий, титан, вольфрам, ниобий, цирконий) и образуют более стойкие карбиды, чем РезС. Длительное воздействие высокой температуры, давления и среды нарушает стабильность структуры металла Х5М. Так, по техническим условиям сталь Х5М, из которой изготовляют трубы, должна иметь структуру, содержащую феррит, пластинчатый перлит и небольшое количество структурно свободных" зернистых карбидов в виде отдельных включений. При длительном действии напряжения и температуры происходят сфероидизация цементита перлита и образование по границам зерен сплошной карбидной сетки, что проявляется в существенном снижении ударной вязкости, прочности и сопротивляемости материала ползучести. [c.105]

    До сих пор самым распространенным способом предотвращения межкристаллитной коррозии является легирование нержавеющих сталей элементами, обладающими большим сродством к углероду, чем хром (Т1, КЬ, Та, 2т, У, V). Из этих элементов наиболее устойчивые карбиды образуют титан, ниобий и тантал, поэтому ими и производят так называемую стабилизацию нерл<авеющих сталей [33, 162]. Среди них самый дешевый и доступный — титан, и поэтому он чаще всего применяется. Однако и здесь основное — правильная термообработка, при которой в твердом растворе остается минимальное содержание углерода. Для обычного применения нержавеющих сталей рекомендуется в них добавлять титан в пяти-, ниобий в десяти-и тантал в пятнадцатикратном количестве по отношению к содержанию углерода. Для некоторых условий этих количеств недостаточно и необходим индивидуальный подход (см. гл. 4.1). Для присадочного материала и электродов (при изготовлении обмазанных проволочных [c.127]

    Титан, образовывая карбиды Т1С, повышая тем самым стойкость против межкристаллитной коррозии, снижает стойкость против межкристаллитной коррозии, снижает стойкость против общей коррозии в сильноокисленных средах, в частности в кипящей азотной кислоте высоких концентраций, способствуя возникновению ножевой коррозии сварных соединений высокохромистых и хромоникелевых сталей. В этом смысле введение титана в сталь, предназначенную для работы в кипящих азотнокислых растворах, вредно. В то же время титан (а также ниобий и особенно молибден и бор) термозит диффузию некоторых элементов, например никеля, что оказывает положительное влияние на сохранение гомогенности стали. К положительным явлениям надо отнести также увеличение межатомных связей под воздействием титана и ниобия примерно в 3—5 раз (по данным Г. В. Курдюмова и С. В. Бокщтейн) [28, 43]. [c.35]


Смотреть страницы где упоминается термин Карбид титана средах: [c.115]    [c.421]    [c.151]    [c.277]    [c.55]    [c.318]    [c.34]    [c.318]    [c.262]    [c.430]    [c.566]    [c.570]    [c.584]    [c.626]    [c.628]    [c.102]    [c.66]    [c.75]    [c.346]    [c.137]   
Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.20 , c.22 ]




ПОИСК





Смотрите так же термины и статьи:

Титан карбид

Титан средах



© 2025 chem21.info Реклама на сайте