Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрическое сопротивление и температура

    Плотность, показатель преломления, кислотное число, число омыления, удельное объемное электрическое сопротивление, температура вспышки определяются единым методом для всех типов и марок сложно-эфирных пластификаторов. [c.121]

    Для всех методов анализа необходимо подразумевать под Р относительное изменение измеряемой величины (электрического тока или напряжения, электрического сопротивления, температуры чувствительного элемента и т. п.), соответствующее полному диапазону изменения концентрации определяемого компонента. [c.86]


    Манометр Пирани. Манометр Пирани [58] состоит из нагретого металлического волокна с высоким температурным коэффициентом электрического сопротивления. Температура, а следовательно, и сопротивление волоска зависят от теплопроводности окружающего газа, которая в области низких давлений линейно зависит от давления. Манометр должен быть прокалиброван для каждого вида газа отдельно, а поэтому может быть лишь косвенно использован в измерениях давления пара. [c.373]

    При дальнейшем повышении напряжения электрического тока количество выделяемого водорода у катода резко возрастает. Это способствует местному разобщению электролита и электрода, в результате чего образуются своеобразные жидкие мостики—места соприкосновения электролита с поверхностью катода. При прохождении через эти мостики тока большой плотности происходит нагрев, вскипание электролита и образование паровой фазы. Слой ионов водорода и паров воды оказывает дополнительное электрическое сопротивление температура катода растет электрический режим в этой стадии процесса — неустановившийся, колеблющийся (вторая стадия процесса). [c.214]

    Действие термометров сопротивления основано на изменении электрического сопротивления проводника в зависимости от температуры. Большинство чистых металлов при нагревании увеличивает свое электрическое сопротивление, а некоторые изменяют сопротивление в определенных температурных интервалах более или менее равномерно. Таким образом, зная зависимость между изменением сопротивления проводника и температурой, можно но величине сопротивления определить температуру, до которой нагрет проводник. Для фиксации этого изменения сопротивления применяют вторичные приборы с температурной шкалой, работающие по той или иной схеме и отстоящие от термометров сопротивления на некотором расстоянии. Между собой термометр сопротивления и вторичный прибор связаны электрическими проводами. [c.53]

    Полиизобутилены характеризуются высокой водо- и газонепроницаемостью даже при повышенной температуре. Они обладают высокими электроизолирующими свойствами тангенс угла диэлектрических потерь 0,0004—0,0005, удельное объемное электрическое сопротивление > 10 Ом-см, электрическая прочность 23 МВ/м. Высокомолекулярные полиизобутилены могут перерабатываться на вальцах, каландрах, шприц-машинах, в прессах только при повышенных температурах 100—200 °С, так как при низких температурах переработки происходит механическая деструкция макромолекул. Причем чем выше молекулярная масса полиизобутилена, тем интенсивнее протекает деструкция. [c.338]


    При обычной комнатной температуре спекающиеся угли, если они хорошо высушены, обладают значительным удельным электрическим сопротивлением [1—4, 7], превышающим 10 Ом-см. Во влажных углях эта величина сильно уменьшается. В антрацитах она падает до 10 Ом-см и ниже. Во всех случаях электросопротивление умень- [c.20]

    При применении любого метода можно установить, что для данного исходного угля электрическое сопротивление, измеряемое при температуре окружающей среды, при повышении температуры коксования Б диапазоне 500—900° С уменьшается чрезвычайно быстро (коэффициент 10 для увеличения температуры на 30—50° С) и значительно медленнее при температуре выше 1000° С. На этом принципе предложен контроль степени готовности среднетемпературных коксов [191. [c.131]

    Зависимость электрического сопротивления металлических проводников от температуры может быть выражена (в ограниченном интервале температур) формулой  [c.931]

    И пламенно-ионизационный детектор (ДИП). Принцип работы детектора по теплопроводности основан на изменении электрического сопротивления проводника в зависимости от теплопроводности окружающей среды. На рис. 3.4 показана схема измерительного моста детектора по теплопроводности. Плечи моста, представляющие собой металлические нити, изготавливаемые из материала, электрическое сопротивление которого значительно зависит от температуры, в сравнительной и рабочей ячейках нагреваются постоянным электрическим током от батареи. От нитей происходит интенсивная теплоотдача газу. Температура нитей, а следовательно, и сопротивление зависят от природы газа. Если через обе ячейки про.ходит газ одинакового состава, то выходной сигнал моста равен нулю. При изменении состава потока через одну из ячеек меняются характер теплоотдачи и температура соответствующего плеча, а следовательно, и сопротивление. Нарушается электрическое равновесие, между точками а и Ь возникает разность потенциалов, не компенсирующаяся дополнительным сопротивлением Я. Эта разность регистрируется в виде сигнала, который усиливается и записывается регистратором в виде пика. [c.193]

    Вплоть до температур примерно 900 К, при которых в видимом диапазоне заметного излучения нет, интегральная нормальная излучательная способность связана с удельным электрическим сопротивлением рд, Ом-м, соотношением [c.194]

    Пример. Технологический блок испарения метанола и парофазного окисления его воздухом в формальдегид в контактном аппарате при / = 700 °С и р = 0,035 МПа. Физико-химические характеристики обращающихся веществ и соответствующие им значения индексов концентрационный предел воспламенения метанола 28,7%, /г=1, /д = 5 нижний предел воспламенения метанола 6%, /г = 2,/д = 6 минимальная энергия зажигания 0,14 МДж, /г = 3. /д = 7 температура среды 700 °С /г = 4, /д = 6 давление 0,035 МПа, /г не учитывается, так как /д = 0 плотность паров метанола по отнощению к воздуху 1,1, /г=6, /д=6 объемное электрическое сопротивление 4,5-10 Ом-м, /г=7, /д = 4. [c.253]

    Пример. По условиям предыдущего примера имеем следующие физико-химические характеристики обращающихся веществ и соответствующие им значения экспертных оценок концентрационный предел воспламенения метанола 28,7%, А эг = = 0,11, Л эд = 0,06 нижний предел воспламенения метанола 6%, Л эг = 0,13, Л эд = 0,08 минимальная энергия зажигания 0,14 мДж, Л эг = 0,13, Л эд = 0,09 температура среды 700 °С, Л эг = 0,13, Мзж = = 0,08 давление 0,035 МПа, Л эг — не учитывается, так как Л эд = 0 плотность паров метанола по отношению к воздуху 1,1, Л эг=0,09, Л эд = 0,06 объемное электрическое сопротивление 4,5-10 Ом-м, Л эг = 0,07, Л эд = 0,03. [c.254]

    По изменению теплопроводности можно также находить содержание параводорода в потоке. Метод основан на том, что теплопроводность параводорода несколько выше теплопроводности ортоводорода в интервале температур от 60 до 300 °К. При проведении этого анализа в газ помещают проволоку, которая нагревается при пропускании через нее электрического тока после установления температурного равновесия измеряется электрическое сопротивление этой проволоки. [c.99]

    Удельное электрическое сопротивление в значительной степени зависит от условий определения — температуры, размера угольных частиц, давления на них, скорости нагревания и т. д. Все это необходимо учитывать при сопоставлении опытных данных, полученных различными исследователями. [c.202]

    Тензочувствительный элемент состоит из четырех резисторов растяжения / р1— р4 и четырех резисторов сжатия / с1— 4, включенных в мостовую схему и выполненных с постоянным натягом в месте деформации упругого элемента. Под воздействием перепада давлений мембрана прогибается, что вызывает перераспределение усилий в чувствительном элементе, изменение его электрического сопротивления и тем самым разбалансировку моста. Компенсационные резисторы обеспечивают постоянство характеристик датчика при изменении температуры окружающей среды от 20 до 50°С. К одной из диагоналей моста подводится напряжение питания 3,5 В от источника постоянного тока I. [c.28]


    Степень кристалличности Температура плавления, °С Температура хрупкости, °С Уд. электрическое сопротивление, Ом-м [c.389]

    Реакционным сосудом является колба из прозрачного кварца емкостью 750 мл, соединенная с одной стороны с капиллярным ртутным манометром, а с другой стороны — через кран — с колбой для исходного углеводорода, насосами, вакуумметром Мак-Леода и т. д. Манометр обогревается с помощью нихромовой проволоки сопротивления до температуры 100—110° С во избежание конденсации продуктов термического превращения. Реакционная колба нагревается в электрической печи, температура которой должна регулироваться с точностью до 1° 0. Максимальный температурный градиент вдаль [c.7]

    Крекинг проводился в кварцевой трубке, нагреваемой в электрической печи сопротивления. Температура измерялась в печи, рядом с трубкой, с помощью термопары. Результаты опытов даны в табл. 16. [c.44]

    Терморегуляторы и реле времени. Производительность горелки должна быть приведена в соответствие, с требованиями технологического процесса. Если эта операция осуществляется автоматически, то клапан, регулирующий подачу топлива, настраивают на сигнал, который может поступать от регулятора температуры или датчика реле времени процесса. Современные промышленные терморегуляторы практически всегда основаны на действии термоэлектродвижущей силы термопар, которая прямо пропорциональна температуре. Если температура процесса превышает допустимый уровень, то результирующая термоэдс воздействует на соленоид, который уменьшает или отключает подачу газа. Другие терморегуляторы основаны на изменении электрического сопротивления при изменении температуры. Терморегуляторы, принцип действия которых основан на свойстве металлов и ртути расширяться при повышении температуры, а также механические терморегуляторы применяют для управления горением в основном при низкотемпературных процессах, например при подогреве воды. [c.126]

    Способность сплава длительное время выдерживать воздействие агрессивных сред при высоких температурах зависит не только от диффузионно-барьерных свойств пленок продуктов реакции, но и от адгезии таких пленок к основному металлу. Нередко защитные пленки отслаиваются от поверхности металла во время циклов нагревания — охлаждения, так как коэффициенты расширения пленки и металла неодинаковы. Американское общество по испытанию материалов провело ускоренные испытания [58 ] на устойчивость различных проволок к окислению. Испытания заключались в циклическом нагревании проволоки (2 мин) и охлаждении (2 мин). Попеременное нагревание и охлаждение заметно сокращает срок службы проволоки по сравнению с постоянным нагревом. Срок службы проволоки в этих испытаниях определяется временем до разрушения или временем до увеличения ее электрического сопротивления на 10 %. В соответствии с уравнением Аррениуса, зависимость срока службы т (в часах) проволоки от температуры имеет вид [c.205]

    С увеличением содержания бора в боридах, т. е. при переходе от РегВ к РеВ, изменяются свойства увеличиваются удельное электрическое сопротивление, температура плавления, удельная электронная теплоемкость, микротвердость и модуль упругости уменьшаются плотность и коэффициент термо-ЭДС. Химические свойства боридов железа очень близки. [c.45]

    С температурный коэфф. линейного расщирения (т-ра 25— 100° С) 10,3-13,1. 10- град коэфф. теплопроводности (т-ра 50° С) 0,45 кал1см сек град, теплоемкость 0,43 кал г град электрическое сопротивление (температура 20° С) 3,6 мком. см. Температурный коэфф. электрического сопротивления (т-ра 20° С) 62,8 10- град К Т-ра перехода в сверхпроводящее состояние 0,064 К. Б.— диамагне-тик, его удельная магнитная восприимчивость (т-ра 20° С) порядка 10 . Работа выхода электронов 3,920 эв. Потенциал ионизации 9,320 и 18,210 вв. Поперечное сечение захвата тепловых нейтронов 0,0090 барн на атом. Эти св-ва зависят от чистоты и структуры металла. Мех. св-ва Б. обусловливаются чистотой металла, размерами зерен, степенью анизотропности (см. Анизотропия), скоростью испытания. Модуль продольной упругости Б. 3 10 кгс1мм , предел прочности на растяжение 20—55 кгсЫм , удлинение 0,2—2%. Обработка давлением улучшает св-ва металла. Предел прочности Б. в направлении вытяжки до 40—80 кгс/мм . [c.133]

    Нижняя зона ШЭП заполнена угольной (криптоловой) насадкой, служащей электрическим сопротивлением. Температура в зоне регулируется подводом электроэнергии через графитовые электроды. Расплавленные хлориды щелочных, щелочноземельных и редкоземельных элементов стекают по насадке, которую используют также для нагревания поступающего хлоргаза. [c.21]

    Получить закон пропорциональности электрического сопротивления температуре из того факта, что при Т>в число фоионов иа одно колебание имеет порядок величины /( (оо), где 0)0 — характерная частота колебаний (4.3). [c.91]

    Диэлектрические свойства силоксановых вулканизатов очень высоки и мало изменяются при повышении частоты до 10 Гц и даже до 10 ° Гц, а также при повышении температуры и в условиях теплового старения (при 250 С —за 10 000 ч). Они сохраняются также длительно в воде. Так, за три недели пребывания резины в воде при 20 5°С удельное объемное сопротивление снижается лишь до 10 10 Ом-см. Изоляция из силок-сановой резины при однократном пробое или действии открытого огня образует, в отличие от органической резины, непроводящую золу (SIO2), способную некоторое время предотвращать падение напряжения в сети. Введением проводящих наполнителей (газовой сажи или металлических порошков) можно получить силоксановые резины с низким электрическим сопротивлением (до 3—5 Ом-см) [72, с. 137—139]. [c.494]

    Процесс сварки труб из центробежнолитых трубных заготовок отличается рядом особенностей вследствие специфических свойств аустенитных хромоникелевых сталей. Аустенитная сталь типа НК-40 характеризуется электрическим сопротивлением, примерно в 5 раз большим, чем обычных углеродистых сталей, и низкой теплопроводностью металла, что определяет выбор методов и режимов сварки. Химический состав хромоиикелевых сталей также оказывает влияние на происходящие металлургические процессы сварки. Высокое содержание хрома в сплаве делает его взаимодействие с кислородом и рядом оксидов (МпО п 5102) достаточно активным, что вызывает интенсивные марган-цево-кремневосстановительные процессы, сопровождающиеся окислением значительных количеств хрома. Другие элементы, входящие в жаропрочный сплав (Ре, N1, Мп, 51, 5, Р, N и др.), при сварке могут образовывать различные эвтектики, карбиды, нитриды, интерметаллиды. Образование в металле новых фаз вызывает появление структурных напряжений, особенно металлов центробежнолитых трубных заготовок с характерной анизотропной дендритной структурой. Наконец, при сварке в результате воздействия высоких температур происходит укрупнение зерен в структуре металла и его разупрочнение при комнатной температуре, что ухудшает эксплуатационные свойства труб. [c.33]

    Прокаливание нефтяного кокса проводптс5Г с целью придания ему высокой плотности, низкого электрического сопротивления, малой реакционной способности и достаточной механической прочности. Прокаленный кокс используют в цветной металлургии для изготовления анодов, катодов и графитировапных электродов. Сущность прокаливания заключается в нагревании кокса до температуры, обеспечивающей глубокое протекание процесса дегидрирования и образование упорядоченной структуры углеродистого остатка. Установки прокаливания нефтяного кокса целесообразно строить на месте его производства н комбинировать с установками замедленного коксования. [c.189]

    Механизм перемещения электрода. Мощность фосфорной печи (а следовательно, и ее производительность) зависит от величины вторичного напряжения печных трансформаторов и силы тока. Сила тока при выбранной ступени напряжения опреде-ияется эле, 1риче-ским сопротивлением реакционной зоны печи. Электрическое сопротивление не является стабильным и меняется в процессе работ 1Л в зависимости от состава и качества шихты, поступающей в печь, температуры процесса, уровня шлака в ванне и ряда других технологических параметров. Обратно пропорционально сопротивлению изменяется и сила тока. [c.128]

    I—температура кристаллизации Т — вязкость (I — удельный иес Р— электрическое сопротивление (и правом нижнем углу изображен фрагмент диаграммы план-кости нл учлстке. примыкающем к оси НгЗО ) [c.228]

    Последнее время во Франции весьма активно обсуждался воспрос о двух характеристиках кокса — реакционной способности и электрическом сопротивлении. Как мы уже отмечали, нелегко выявить относительную роль этих двух характеристик, которые меняются почти всегда параллельно и в действительности выражают графити-зируемость угля в области температур его применения, т. е. 1500— 1800° С. Ясно одно — то, что восстановители, дающие наилучшие результаты — древесный уголь, тощие угли и антрациты, а также коксы, содержащие некоторую часть пламенных углей, имеют в общем повышенное электросопротивление. Это кажется логичным, так как если электросопротивление загрузки уменьшается, то необходимо поднимать электроды печей для сохранения плотности тока и рабочего напряжения. Горячая зона распространяется тогда внутрь загрузки, что приводит к некоторым отрицательным явлениям, таким как увеличение тепловых потерь, и возможным затруднениям при выделении окиси углерода. [c.223]

    В своих первых работах в этой области Эндрюс и Амага вместо пьезометра использовали калиброванный по длине стеклянный капилляр, запиравшийся ртутью. По положению ртути определялся объем, занятый газом. Камерлинг-Оннес [52а, 94] в Лейдене применял этот метод для измерения сжимаемости гелия. Положение ртути в капилляре можно определять визуально с помощью катетометра [94—102] или по изменению электрического сопротивления проволоки, натянутой вдоль оси капилляра [103, 104]. Во всех случаях необходимо вводить поправки, учитывающие влияние мениска ртути в капилляре и температурное расширение стекла. Используя прибор подобного типа, Амага удалось создать давление до 450 атм, хотя в таких случаях максимальное давление обычно не превышает 150 атм. Верхний предел температуры определяется давлением паров ртути над ее поверхностью. При температуре выше 150° С необходимо принять соответствующие меры, чтобы быть уверенным в том, что пары ртути находятся в равновесии с исследуемыми парами или газом. Коннолли и Кандалик [102], использовавшие подобный прибор вплоть до 300° С, обнаружили, что даже при перемешивании с помощью магнитной мешалки (стальной шарик) со скоростью 50 цикл1сек для достижения равновесия паров ртути с парами исследуемого вещества или газом требовалось больше 2 час. Более подробно проблема растворимости ртути в сжатых газах обсуждается в конце этой главы. При использовании рассмотренного выше метода ошибка измерений составляет примерно 0,1 %  [c.99]

    В настоящее время катарометр — наиболее распространенный детектор. Основным элементом ячейки по теплопроводности служит металлическая нить, скрученная в спираль и расположенная внутри камеры в металлическом блоке. Нигь изготавливают из материала, электрическое сопротивление которого резко изменяется с температурой. Пропуская постоянный ток, нить нагревают, ее температура определяется равновесием, устанавливающимся м жду. входной электрической мощностью и мощностью тепловых потерь, связанных с отводом тепла окружающим газом. Когда через прибор протекает только газ-носитель, потери тепла постоянны и поэтому температура нити сохраняется. При изменении состава газа (например, при наличии анализируемого вещества) температура нити изменяется, что вызывает соответствующее изменение электрического сопротивления, которое фиксируется с помощью моста Уитстона. Тепло отводят в тот момент, когда молекулы газа ударяются о нагретую нить и отскакивают от нее с возросшей кинетической энергией. Чем больше число таких столкновений в единицу времени, тем больше скорость отвода тепла. [c.299]

    Удельное объемное электрическое сопротивление стекол Q (ом см) сильно изменяется с температурой. Свойство стекла как изолятора часто характеризуется температурой I при которой 0=100 AIoM см.  [c.325]

    Анализ основан на индивидуальных значениях теплопроводности различных газов и паров. Теплопроводность смеси газов и паров является функцией теплопроводности и концентрации каждого из компонентов смеси. Поэтому термокондуктометрический метод газового анализа неизбирателен. Как правило, функция, связывающая теплопроводность и состав смеси, нелинейна даже для бинарных смесе и не подчиняется правилу аддитивности в ряде случаев она еще и неоднозначна. Поэтому ТП-газоанализаторы градуируются эмпириче-ски. Измерение теплопроводности осуществляется путем определения теплоотдачи проволоки, нагреваемой электрическим током и помещенной в контролируемую смесь газов и паров. О перепаде температуры проволоки судят по изменению электрического сопротивления последней. Выходной электроизмерительный прибор схемы измерения сопротивления градуируется в единицах концентрации соответствующего компонента газовой смеси. [c.606]

    Улучшение работы свечей зажигания при добавлении фосфорных присадок принято объяснять следующим образом [1, 2]. Электрическое сопротивление такого соединения, как РЬВгг, резко уменьшается даже при нагреве до относительно невысоких температур, тогда как соединение фосфора со свинцом РЬз(Р04)2 остается неэлектропроводным (рис. 2) до весьма значительных тем- [c.48]

    Для того, чтобы выбрать подходящий тип пылеулавливающей устаиовки, необходимо знать характеристику газов и объем очищаемого газа. Темзпература и химический состав газов, а также тип улавливаемых частиц являются определяющими факторами при выборе установки и коиструкционных материалов. Необходимо учитывать и точку росы газов, которая может быть чрезвычайно вышка в случае оксида серы.( / 1), а инопда определяют минимальную рабочую температуру, например в случае применения рукавных фильтров. Высокая точка росы может оказаться преимуществом, поскольку она очень часто определяет оптимальную рабочую температуру для электростатичеоких фильтров, улавливающих дымы с высоким электрическим сопротивлением. В таком случае в газовый поток иногда добавляют ЗОз для повышения точки росы, и требуемое ее количество необходимо рассчитать. [c.58]

    На рис. III.9 приведены данные по мгновенным значениям а, полученные Миклеем с сотр. [177] с помощью малоинерционного нагревателя из тонкой платиновой фольги толщиной 25 мкм, иллюстрирующие еще одну принципиально важную особенность процесса внешнего теплообмена. Высота нагревателя составляла 12,5 мм, а по ширине он закрывал окружности бакелитовой трубки диаметром 6,3 мм, погруженной в кипящий слой. Между фольгой и стенкой трубки был воздушный зазор толщиной 0,5 мм. Фольгу размещали на высоте 450 мм от газораспределительной решетки. Через фольгу пропускали ток /, силу которого поддерживали постоянной. Мгновенные значения напряжения на концах фольги и регистрировали шлейфовым осциллографом. Произведение и характеризовало рассеиваемую фольгой мощность, которую считали равной мгновенному значению теплового потока q от нагревателя к кипящему слою. Отношение U/I = rj давало мгновенное значение электрического сопротивления фольги. При наличии значений температурного коэффициента сопротивления платины можно было рассчитать мгновенное значение температуры фольги и перепад ДГ между нагревателем и кипящим 138 [c.138]

Рис. 18.3. Изменение электрического сопротивления нержавеющих сталей 18-8, содержащих азот или углерод, вследствие межкристаллитной коррозии в растворе 10% Си30410% Н2804. Все образцы предварительно сенсибилизированы при указанных на рисунке температурах в течение 217 ч Рис. 18.3. <a href="/info/1608686">Изменение электрического сопротивления</a> <a href="/info/17132">нержавеющих сталей</a> 18-8, содержащих азот или углерод, вследствие <a href="/info/10625">межкристаллитной коррозии</a> в растворе 10% Си30410% Н2804. Все <a href="/info/839496">образцы предварительно</a> сенсибилизированы при указанных на рисунке температурах в течение 217 ч

Смотреть страницы где упоминается термин Электрическое сопротивление и температура: [c.123]    [c.20]    [c.228]    [c.33]    [c.694]    [c.453]    [c.116]    [c.125]    [c.230]    [c.37]   
Конструкционные свойства пластмасс (1967) -- [ c.103 , c.105 ]

Конструкционные свойства пластмасс (1967) -- [ c.103 , c.105 ]




ПОИСК





Смотрите так же термины и статьи:

Измерение электрического сопротивления при низкой температуре

Металлы, сопротивление их прохождению электрического тока при повышенной температуре

Методы электрического нагрева. Нагреваемый материал сам служит сопротивлением. Неметаллические сопротивления. Металлические нагревательные элементы. Монтаж металлических нагревателей. Теплоотдача металлических нагревателей. Электрический нагрев свинцовых ванн. Электрический нагрев соляных ванн. Оборудование для индукционного нагрева РЕГУЛИРОВАНИЕ ТЕМПЕРАТУРЫ В ПЕЧИ

Определение удельного электрического сопротивления полупроводников и установление зависимости сопротивления от температуры

Проводники электрические, изменение сопротивления при изменении температуры

Электрическое сопротивление



© 2025 chem21.info Реклама на сайте