Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты, ацилирование групп

    Химические реакции для открытия и определения аминокислот в гидролизатах белков. В курсе органической химии подробно рассмотрено множество химических реакций, характерных для а-амино- и а-карбоксильных групп аминокислот (ацилирование, алкилирование, нитрование, этерификация [c.40]

    Заслуживает особого внимания реакция ацилирования аминокислот. Другие реакции аминокислот также имеют важное биологическое значение. Папример, как будет показано позднее, в основе всех реакций витамина Вб лежит образование оснований Шиффа (взаимодействие амино- и альдегидной групп гл. 7). Однако именно ацилирование аминогрунны одной аминокислоты карбоксильной (активированной) группой другой аминокислоты приводит к образованию пептидной связи и затем к образованию полимерной молекулы—белка. Для химика-биооргаиика весьма интересно сопоставить синтез наиболее сложных макромолекул в пробирке и в организме. [c.52]


    При обработке а-аминокислот ангидридами в присутствии пиридина происходит замещение карбоксильной группы на ацильную и ацилирование группы NH2. Этот процесс получил название реакции Дакина — Веста. Ее механизм включает образование оксазолона [372]. Иногда реакцию можно провести с карбоновыми кислотами, не содержащими а-аминогрунпы в таких случаях реакции способствуют 7- или б-аминогруппы [373]. [c.473]

    Реакции группы NHg. Ацилирование. а. При обработке аминокислот хлорангидридами, главным образом хлористым бензоилом, в присутствии концентрированного раствора едкой щелочи получаются N-ацилпроизводные (реакция Шоттена—Баумана). [c.379]

    В принципе, активация карбоксильной группы может достигаться с помощью щироко применяемых реакций ацилирования, известных из общей органической химии (образование хлорангид-ридов, ангидридов и т. д.). Однако аминокислоты и пептиды являются полифункциональными соединениями, и нежелательная реакционная способность в той или иной мере всегда присутствует даже в полностью защищенных производных. Эта реакционная способность часто возрастает вследствие определенных пространственных соотношений между боковыми группами или концевыми функциональными группами и находящимися внутри молекулы пептидными связями. Например, неожиданно легко могут происходить р-элиминирование и замыкание пятичленного цикла. Главным образом по этой причине пептидный синтез представляет собой отдельную техническую операцию необходимо точное следование оптимальным условиям реакции, чтобы свести к минимуму указанные побочные реакции. Важным примером этих последних является образование оксазолонов (1) путем взаимодействия акти- [c.369]

    Характер связи между полисахаридными и пептидными цепями. Поскольку от характера связи между полисахаридными и пептидными цепями и ее устойчивости к разного рода воздействиям в значительной мере зависит химическое поведение гликопротеина, вопрос о типе связи является центральным вопросом химии этих биополимеров. Типы такой связи вследствие полифункциональности моносахаридов и аминокислот могут быть Достаточно многообразными. В принципе возможны сложноэфирная связь гидроксильной группы сахара с карбоксилом аминокислоты (/4), ацилгликозидная связь гликозидного гидроксила сахара с карбоксилом аминокислоты (В), амидная связь аминогруппы аминосахара с карбоксилом аминокислоты (С), гликозиламинная связь, образованная аминогруппой аминокислоты, связанной с гликозидным центром (D), N-ацил-гликозиламидная связь, образующаяся при ацилировании аминогруппы гликозиламина карбоксильной группой двухосновной аминокислоты (Е), О-гликозидная связь, образованная гликозилированием восстанавливающим концом олиго- или полисахаридной цепи гидроксила оксиаминокислоты (F). Менее вероятна простая эфирная связь гидроксильных групп моносахарида и оксиаминокислот (G) и амидная связь аминогруппы аминокислоты с карбоксильной группой уроновой кислоты (Я). [c.570]


    Рентгеноструктурные исследования показали, что помимо серина-195 в активный центр входят также остатки гистидина (Н1з-57) и аспарагиновой кислоты (А5р-102). Другой остаток гистидина (Н1з-40) не участвует в катализе. Фермент обладает специфичностью к ароматическим аминокислотам. Эфиры ароматических аминокислот — хорошие субстраты этого фермента, и для большинства кинетических исследований в качестве субстратов использовались такие эфиры. Фермент расщепляет пептиды, освобождая карбоксильную группу ароматических аминокислот. После образования комплекса Михаэлиса единственный реакционноспособный 5ег-195 вначале ацилируется, образуя ацилферментное промежуточное соединение с субстратом. Превращение комплекса Михаэлиса в ацилфермент происходит сначала путем образования тетраэдрического интермедиата (разд. 4.4.1), и наконец происходит гидролиз ацилфермента при атаке молекулой воды, так что ацилированный продукт обычно не накапливается. [c.220]

    Не меньшее значение, чем эфиры аминокислот, имеют ангидриды аминокислот, особенно смешанные ангидриды ацилированных аминокислот с неорганическими и органическими кислотами. Эта группа соединений представляет краеугольный камень, на котором построено большинство современных методов синтеза пептидов. Ниже приведено несколько примеров синтеза ангидридов ацилированных аминокислот. [c.463]

    Одновременное существование в одной молекуле амино-и карбоксильной групп отражается и на поведении аминокислот в тех реакциях, в которых участвует только одна из двух функциональных групп. Аминогруппа, которая в аминах проявляет себя как нуклеофил, в биполярном ионе полностью лишена нуклеофильности из-за протонирования водородным атомом карбоксила поэтому ни реакция алкилирования по Гофману, ни ацилирование, свойственные аминам, не имеют места в случае биполярных ионов аминокислот. Эти реакции могут происходить только при условии предварительного депротонирования аминогруппы, что достигается испатьзовани-ем реакционной среды с высокими значениями pH, при которых цвиттер-ион полностью превращён в карбоксилат-анион для этого аминокислоты обрабатывают эквивалентом органического (реакция А В - амин) или неорганического (реакция Б В - атом металла) основания  [c.44]

    После проведения гидролиза белка полученную смесь аминокислот необходимо разделить и количественно проанализировать. Метод газо-жидкостной хроматографии привлекает своей быстротой и чувствительностью, в особенности метод хромато-масс-спек-трометрии [10]. Разумеется, необходимо перевести свободные аминокислоты в более летучие для ГЖХ производные и в этом состоит трудность. Большинство известных методов включает две реакции образование сложного эфира по карбоксильной группе и ацилирование аминогруппы. Крайне важно, чтобы обе реакции протекали практически нацело, а образовавшиеся производные можно быЛ о бы разделить. Несколько сотен опубликованных за последние 25 лет работ свидетельствуют о трудностях, которые при этом возникают. Карбоксильную группу обычно переводят в сложноэфирную, используя простые радикалы от метила до пентила, в то время как для защиты амино- или иминогруппы популярны iV-трифтораце-тильная и JV-гептафтормасляная группы, так как они позволяют проводить ГЖХ-анализ с высокой чувствительностью при использовании детектора электронного захвата. Трудности связаны с ацилированием гуанидиновой группировки аргинина и термолабильностью производных цистеина из-за реакций -элиминации. Обсуждаемая техника и соответствующая литература коротко изложены в обзоре [11]. [c.260]

    Образовавшийся ангидрид подвергается нуклеофильной атаке по одной из двух карбонильных групп, так как вторая карбонильная группа менее электрофильна (окружена с двух сторон атомами азота и кислорода) и одновременно является лучшей уходящей группой. Карбамат легко разлагается на пептид и диоксид углерода. Фосген играет роль конденсирующего агента, так как после образования ангидрида происходит его замещение второй аминокислотой. Ангидрид не выделяется. Карбамат также не выделяется, и ход реакции сложно контролировать. Образующийся дипептид может снова вступать в реакцию Ы-ацилирования, давая ангидрид, который затем атакует третья аминокислота и т. д. [c.88]

    Описанный способ не является универсально применимым, поэтому для защиты карбоксильной функции аминокислоты (или пептида), подлежащей-ацилированию, необходимо применять обратимо отщепляемые группировки. Для этой цели в первую очередь подходят различного типа эфиры. Амидные группы служат, как правило, достаточной защитой, если входят в состав растущего пептида. Для улучшения растворимости амидов пептидов в органических растворителях нужно блокировать амидную группу. Следует различать карбоксизашитные группы, которые по окончании синтеза пептида или пептидного фрагмента снимаются с регенерацией свободной карбоксильной группы и такие, которые после получения фрагмента либо прямо, либо после соответствующей обработки превращаются в группы, способные к дальнейшему аминолнзу. Эти защиты названы Вюншем [125] ка.к истинные, или потенциально активные, карбоксизащитные группы. Принята следующая классификация защитных групп  [c.116]


    В течение последних лет были накоплены данные, свидетельствующие о том, что многие биологически важные реакции ацилирования связаны с промежуточным образованием ацилфосфатов (смещанных эфиров фосфорной и карбоновой кислот). К этим реакциям относится и активация карбоксильной группы аминокислот на одной из стадий биосинтеза белка [201, 311]. В связи с этим полезно кратко обсудить методы получения ацилфосфатов. Вследствие большой нey foйчивo ти они в известной мере отличаются от эфиров фосфорной кислоты. Как смешанные ангидриды кислот ацилфосфаты гидролитически неустойчивы и по реакциднной способности напоминают пирофосфаты и ангидриды фосфатов с другими сильными кислотами. Как и ожидалось, в трех группах ацилфосфатов устойчивость возрастает в порядке СЬХXXVIII СХС- [c.142]

    В результате ацилирования группа NHg теряет свой основной характер следовательно, ацилированные аминокислоты типа гипнуро-вой кислоты обладают той же силой, что и обычные карбоновые кислоты. [c.380]

    Ацилирование химотрипсина метиловыми эфирами а - -ацилзаме-щенных-/,-аминокислот. Характеристикой собственной (внутренней) реакционной способности составного нуклеофила активного центра будем считать константу скорости для некоторой модельной реакции, в которой боковые группы субстрата не принимают участия в сорбции на белке. Для того чтобы найти эту величину, проанализируем, как влияет изменение структуры отдельных субстратных фрагментов на общую скорость образорания ацилфермента  [c.158]

    Введение Ы-защитной группы представляет собой реакцию К-ацилирования (аминокислоты в щелочной среде или ее эфира). С-Зашитные группы вводят с использованием реакции этерификацин (аминокислоты или ее Н-ацильного производного). [c.351]

    Эта группа представляет собой ацильную защитную группу, предназначенную для блокирования аминогрупп и легко удаляемую при мягкой кислотной обработке. После ацилирования аминогруппа становится химически неактивной, т. е. теряет нуклеофильные свойства, в результате делокализации электронов по амидной связи (карбамат). Эта группировка вводится при взаимодействии соответствующего хлорида с аминокислотой. Хлорид синтезируют из трег-бутанола и фосгена. [c.70]

    Синтез пептидов можно осуществлять не только активацией карбоксильной, но и аминной группы, удлиняя пептидную цепь со стороны аминной конечной группы. Наиболее удачными является активация эфиров аминокислот производными фосфорной кислоты. При действии на эфиры аминокислоты тетраэтилпирофосфитом образуется фосфоами-носоединение, которое реагирует затем с ацилированными или алкилированными аминокислотами. [c.495]

    Пептиды недостаточно летучи, чтобы их можно было изучать епосредственно с помощью масс-спектрометрии электронного удара. Первые попытки применения масс-спектрометрии для определения последовательности включали предварительное ацилирование аминогрупп и этерификацию карбоксильных групп. Масс-спектры таких производных показали, что расщепление происходит с обеих сторон карбонильных групп. Расщепление связи С—N приводит к ионам ацилия —ЫНСНДС=0+, в то время как расщепление связи С—С дает альдиминиевые ионы —+NH= HR. Это основная тенденция кроме того, происходит дополнительная фрагментация боковых групп некоторых аминокислот, включая валин, лейцин, аспарагин, серин, треонин и цистеин. [c.278]

    Перечислите пять методов активации карбоксильной группы амянркас-чоты, даю-ших возможность провести ацилирование аминогруппы другой молекулы аминокислоты, [c.430]

    В отличие от алкилирования ацилирование всегда приводит только к N-моноациламинокислотам, так как характерная для амидов прототропная таутомерия резко снижает нуклеофильность атома азота, и дальнейшее ацилирование становится неосуществимым. Поэтому введение ацильной группы к атому азота рассматривается как способ лишения аминогруппы реакционной способности ("защшпа аминогруппы"). По этой же причине N-ацил аминокислоты не имеют, в отличие от N-ал-киламинокислот, цвиттер-ионов. [c.46]

    Чтобы избежать опасности нежелательного обмена карбоксильными группами между промежуточными карбаматами пептидов и аминокомпонентом, необходима высокая скорость перемешивания. Столь же существенно для гладкого протекания реакции ацилирования точное контролирование pH (pH 10,2—10,5 для аминокислот или pH 10,2 для пептидов при рН> 10,5 в качестве побочных продуктов в результате частичного гидролиза образуются гидантоиновые кислоты). Для пептидного синтеза были примекены также тиоаналоги Ы-карбоксиангидридов — ангидриды Ы-тиокарбоновых кислот (НТА 1,3-тиазолидиндионы-2,5) интересно, что соответствующие тиокарбаматные соли отличаются высокой стабильностью. Ащ1лирование этими соединениями может происходить уже.при pH 9—9,5, а опасность гидролитического превращения в гидантоиновые кислоты снижается (253, 254]. [c.146]

    Приведем примеры защиты аминогруппы и ацилирования одной аминокислоты (в виде разных функциональных производных) другой с последующим отщеплением от динептида защищающей группы. [c.503]

    Э Фишером в 1902 г, имеют только исторический интерес, то превращение аминокислот в ангидрид или смешанный ангидрид (см раздел 25 2 1) является в настоящее время одним из основных методов активащш ее карбоксильной группы для ацилирования по аминогруппе другой аминокислоты [c.876]

    Классический способ расщепления рацемических аминокислот на оптические антиподы состоит в ацилировании (как правило, формили-ровании) группы NH2 (что сильно повышает их кислотность) и образовании солей с оптически деятельными основаниями, как и в случае любой оптически деятельной кислоты (Э. Фишер, 1906 г.). [c.383]


Смотреть страницы где упоминается термин Аминокислоты, ацилирование групп: [c.211]    [c.33]    [c.211]    [c.386]    [c.370]    [c.681]    [c.565]    [c.86]    [c.178]    [c.204]    [c.293]    [c.79]    [c.325]    [c.461]    [c.105]    [c.198]    [c.502]    [c.223]    [c.316]    [c.369]    [c.400]    [c.317]    [c.452]    [c.81]    [c.86]   
Биохимия аминокислот (1961) -- [ c.36 ]




ПОИСК





Смотрите так же термины и статьи:

Ацилирование



© 2025 chem21.info Реклама на сайте