Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Альдегиды ненасыщенные, нуклеофильное

    Это нуклеофильное присоединение к сг,р-ненасыщенным карбонильным соединениям (называемое реакция Михаэля ) не ограничивается кислотами, оно вообще характерно для а, 1-не-насыщенных сложных эфиров, кетонов, альдегидов, а также нитрилов. На самом деле а,р-ненасыщенные кислоты реагируют труднее, чем их эфиры или нитрилы, поскольку в используемых условиях карбоксильная группа обычно превращается в анион (наиболее сильные нуклеофилы являются также основаниями), который, будучи отрицательно заряженным, менее чувствителен к нуклеофильной атаке, чем незаряженная частица. Однако производные карбоновых кислот реагируют легко, например  [c.256]


    Тиоацеталь из альдегида и меркаптана при катализе ВРз Нуклеофильное ацилирование а,Р-ненасыщенного кетона 2-литий- [c.599]

    Реакции присоединения (символ А) и обратные им реакции отщепления, или элиминирования (символ Е). К таким процессам относятся упоминавшиеся выше реакция диенового синтеза (уравнение 4.6) и реакция отщепления (уравнение 4.7). Для ненасыщенных углеводородов характерны реакции электрофильного присоединения Ае (см. 5.2),. для альдегидов и кетонов — реакции нуклеофильного присоединения An (см. 7.2). [c.93]

    Взаимодействие ряда нуклеофильных реагентов с а,3-ненасыщенными альдегидами протекает как 1,2-присоединение по С=0-группе. [c.176]

    Как и реакции сопряженных алкадиенов с электрофильными реагентами, реакции а,Р-ненасыщенных альдегидов и кетонов с нуклеофильными реагентами подчиняются или кинетическому, или термодинамическому контролю. [c.179]

    Способность к присоединению нуклеофильных реагентов проявляют а-, -ненасыщенные кетоны, альдегиды, нитрилы. У этих соединений двойная углерод-углеродная связь значительно менее активна по отношению к электрофильным реагентам, а карбонильная группа проявляет пониженную активность к нуклеофильным реагентам. Причина такого явления заключается в сопряжении кратных углерод-углеродных и углерод-кислородных (углерод-азотных) связей  [c.175]

    Но в некоторых случаях скорость реакции определяется нуклеофильной атакой галогена и тогда наблюдается обратный порядок возрастания реакционной способности соединений по сравнению с реакциями, в которых участвует электрофильный галоген. Данные табл. 21 показывают, что присоединение к кротоновому альдегиду в присутствии кислоты проходит быстрее аналогичного присоединения к коричному альдегиду. В соответствии с этим /г-ксилохинон в реакциях этого рода оказывается менее реакционноспособным, чем бензо-хинон [21]. С другой стороны, меньший каталитический эффект в реакции присоединения к ш-нитростиролу и а, р-ненасыщенным кислотам по сравнению с реакциями а, р-ненасыщенных альдегидов и кетонов почти наверное определяется большей основностью последних. [c.153]

    Присоединение нуклеофильных реагентов. Известно, что изолированная двойная связь С=С взаимодействует только с электрофильными реагентами. В а,Р-ненасыщенных альдегидах и кетонах связь С=С иногда настолько активирована вследствие сопряжения с соседней двойной СО-связью, что она может присоединять и нуклеофильные реагенты. Нуклеофильный (электронодонорный) реагент вступает в -положение [c.692]


    К числу важнейших электрофилов относятся соли металлов, доноры протонов, галогены, кислород, сера, двуокись серы, галогениды трехвалентного фосфора, кремния и бора, двуокись углерода, галоидангидриды кислот, эфиры карбоновых кислот, альдегиды, кетоны, нитрилы и амиды. Многие из приведенных в этой главе реакций, включающих образование углерод-углеродных связей, более подробно обсуждены в гл. 13, посвященной нуклеофильному присоединению к ненасыщенному углероду. Как было указано ранее (стр. 192), в том случае, когда отрицательный и положительный углерод реагирует с образованием связи углерод — углерод, реакция может быть классифицирована либо как нуклеофильная, либо как электрофильная в зависимости от произвольного распределения ролей (реагента или субстрата) между обоими реагирующими соединениями. [c.251]

    Сопряжение карбонильной группы с ненасыщенным углеродом, как в а,р-ненасыщенных альдегидах, кетонах и эфирах, приводит к появлению частичного положительного заряда на атоме углерода, удаленном от кислородного атома, и поэтому этот атом углерода становится местом нуклеофильной атаки (гл. 10, разд. 2Б). Это означает, что углерод-углеродная двойная (или тройная) связь будет взаимодействовать с реагентами, которые обычно реагируют лишь с положительным углеродным центром, а ожидаемая реакционная способность карбонильного атома углерода будет понижена или подавлена вообще. [c.395]

    В разделе Алкилирование а,р-ненасыщенными альдегидами (стр. 47), посвященном алкилированию енаминов электрофильными соединениями, были приведены примеры реакций, в которых за начальной стадией следовала внутримолекулярная атака аниона на образовавшуюся иминиевую соль. В разделе Реакции с промежуточной нуклеофильной атакой на иминиевую форму (стр. 85) упоминались реакции, которые заключаются во внутримолекулярной нуклеофильной атаке на образовавшуюся иминиевую соль. В данном разделе рассматриваются такие реакции енаминов, в которых нуклеофильный реагент вступает в межмолекулярную реакцию с предварительно полученной иминиевой солью. [c.88]

    Широкое применение в органическом синтезе находят тетракар-бонилфсрраты щелочных металлов, например КНРе(С0)4 и К2ре(СО)4, легко получаемые реакцией Ре (СО) 5 с КОН или амальгамой калия (см. также разд. 15.6.3.6). Так, анион [НРс(С0)4] может применяться для восстановления оксидов олефинов в олефины [322], восстановления . -ненасыщенных карбонильных соединений в соответствующие насыщенные карбонильные соединения [323, 324], алкилбромидов в алканы [325] и хлорангидридов кислот в альдегиды [326]. Возможно, что при этом протекает нуклеофильная атака карбонилферратного аниона с последующим восстановительным элиминированием от атома железа (схема 286). [c.326]

    В своей основе этот метод представляет собой один из вариантов давно известной реакции нуклеофильного присоединения по тройной связи, которая особенно часто использовалась для получения виниловых эфиров или винилсульфидов взаимодействием спиртов или меркаптанов соответственно с терминальными ацетиленами в присутствии оснований. Естественно, что в такой реакции невозможно было использовать в качестве нуклеофилов кар-банионные производные типа литий- или магнийорганических соединений, ибо единственным результатом реакции последних с терминальными ацетиленами было образование соответствующих ацетиленидов лития или магния (из-за повыщенной кислотности ацетиленового протона). В методе Нормана в качестве эквивалентов карбанионов используются купратные реагенты, низкая основность которых исключает возможность упомянутого осложнения. Непосредственным результатом присоединения этих реагентов по тройной связи является образование интермедиатов карбанионного типа, а именно винилкупратов. Последние достаточно стабильны в растворе и могут далее реагировать с щироким кругом различных электрофилов, таких, как СО2, алкилгалогениды, эпоксиды, альдегиды, а,р-ненасыщенные кетоны и т. д. Конечным итогом последовательности этих двух независимых химических событий — присоединения С-нуклеофила и С-электрофила по тройной связи — является образование соответствующего алкена. [c.119]

    Разнообразие возможных продуктов альдольно-крото-вой конденсации не исчерпывается образованием альдо-й и ненасыщенных альдегидов и кетонов Сопряжение -ненасыщенных альдегидах и кетонах облегчает отрыв -атома водорода (по отношению к двойной С=С связи) нуклеофильное присоединение по двойной связи (реак- [c.587]

    В качестве доноров могут быть использованы фенилгидразин или гидразин [46]. Гидразоны а,Р-ненасыщенных альдегидов в результате внутримолекулярной нуклеофильной циклизации яасто дают пиразолины [47]  [c.267]


    По-прежнему в центре внимания исследователей остаются реакции нуклеофильного присоединения к ненасыщенным соединениям, таким, как альдегиды, кетоны, альдегидо- и кетокислоты, кетены, изоцианаты и др. При этом получаются а-оксигидропере-киси, перекиси, а также смешанные гидропероксидиалкилперекиси и более сложные полимерные перекиси. Например, для альдегидов и кетонов  [c.12]

    За прошедшие годы появилось значительное количество исследований, в которых был расширен круг галоидорганических соединений, вступающих в реакцию Арбузова, и проведены исследования по изучению ее механизма. Однако за последние 20 лет наметилось и другое, не менее важное и интересное направление исследований в химии производных кислот трехвалентного фосфора — изучение взаимодействия с органическими электрофильными реагентами, не содержащими атомов галоидов. Эта новая, многообещающая и быстро развивающаяся область фосфорорганической химии включает разнообразные превращения производных кислот трехвалентного фосфора с широким кругом соединений как насыщенного, так и ненасыщенного рядов — спиртами, перекисями и гидроперекисями, карбоновыми кислотами и их производными, аминами, альдегидами, кетонами, сернистыми соединениями, непредельными углеводородами и др. Ввиду многообразия реагентов, вступающих в реакции с соединениями трехвалентного фосфора, естественно и механизмы их протекания неоднозначны. Наряду с нуклеофильным замещением наблюдаются процессы нуклеофильного присоединения и окисления. Многие из реакций нуклеофильного замещения и присоединения осуществляются по схемам, аналогичным или близким к предложенным для классической перегруппировки Арбузова и могут рассматриваться как ее разновидности. В первой фазе происходит атака атома фосфора на атом углерода, несущий какую-либо функциональную группу или являющийся концевым в непредельной системе, по механизму бимолекулярного нуклеофильного замещения с образованием квазифосфониевого соединения или биполярного иона. Во второй фазе в результате 5д,2-реакции аниона [c.5]

    В равновесной смеси преобладает изомер со связью кремний-уг-лерод см. схему (283) в разд. 13.5,1 . Триметилсилилцианид реагирует с альдегидами, кетонами, кетенами и хинонами в присутствии нуклеофильных катализаторов или кислот Льюиса с образованием силиловых эфиров соответствующих циангидринов. Реакция легко протекает даже в тех случаях, когда обычным путем циангидрины не могут быть получены схема (692) [561]. Сопряженное присоединение Мез51СК к а,р-ненасыщен-ным кетонам и хинонам не идет схемы (693) [561] и (695) [c.194]

    Нуклеофильные реакции имеют важное значение в промышленности основного органического и нефтехимического синтеза. К их числу относятся процессы замещения и расщепления галогенпро-изводных, спиртов и эфиров сульфокислот (синтез спиртов, простых эфиров, меркаптанов, сульфидов, аминов, ненасыщенных веществ, а-окисей н других гетероциклических соединений), реакции присоединения (синтезы из а-окисей, альдольная конденсация, получение азотсодержащих производных альдегидов и кето-нов, некоторые реакции присоединения по двойным и тройным связям), процессы этерификации и другие превращения кислот и их производных. [c.28]

    Диэтиловый эфир аллилмалоновой кислоты, эфиры аллилацето-уксусной и аллилциануксусной кислот не образуют циклических кетонов наблюдается только перемещение двойной связи и гидрирование, обусловленное переносом водорода . В то время как в случае ненасыщенных тиолов, карбоновых кислот, уретанов, мочевин и оксимов альдегидов реакция циклизации не происходит из-за превращения исходных соединений в другие продукты, трудности, встреченные при осуществлении реакции с тремя последними ал-лильными соединениями, вероятно, связаны с пониженной электронной плотностью у атома Z и, как следствие, с невозможностью нуклеофильного воздействия группы 2Н на ацилиевый катион (см. IV. 2). [c.153]

    Галогены являются типичными электрофильными реагентами. Однако можно предвидеть, что если олефиповая связь в достаточной степени поляризована электроноакцепторной группой, то монсно осуществить нуклеофильное присоединение галогена Ас . Убедительным доказательством возможности этого служат примеры присоединения хлора и брома к а, -ненасыщенным альдегидам и кетонам в уксусной кислоте в присутствии сильных кислот [66]. В отсутствие сильных кислот присоединение протекает медленно, но оно энергично катализируется сильными кислотами водой катализ подавляется. Зависимость скорости каталитического присоединения от структуры совершенно иная, чем в случае обычного электрофильного присоединения, например прхгеоединения хлора по реакции второго порядка. Это иллюстрируется следующим рядом сравнительных скоростей катализируемого серной кислотой присоединения брома и некаталитического присоединения хлора при этом все реагенты, включая серную кислоту, применялись в концентрациях 0,0125 моль/л в уксусной кислоте  [c.803]

    В предыдущей главе отмечалось, что карбонильная группа альдегидов, как правило, более активна по отношению к нуклеофилам, чем карбонильная группа кетонов. Это различие в активности очень важно при обсуждении химии веществ, которые в принципе могли бы обнаруживать предпочтение к присоединению по карбонилу по сравнению с сопряженным присоединением. В общем ненасыщенные альдегиды менее склонны, чем кетоны, к участию в сопряженном присоединении. Принято считать, что реакции этого типа, так же как реакции электрофильного присоединения к а,р-непредельным соединениям, протекают через образование продукта 1,4-присоединепия (продукта кинетического контроля), который далее перегруппировывается в термодинамически более устойчивый конечный продукт. Итак, если первоначально образующийся мезомерный ион в электрофильном присоединении является катионом, то в нуклеофильном присоединении первоначально образуется мезомерный анион, стабильность которого определяется электроноакцепторным (и, следовательно, делокализующим) действием карбонильного кислорода. Схема этого процесса подробно представлена для конкретного случая в реакции 1. [c.422]

    Многие из реакций нитрилов очень схожи с реакциями карбонильных соединений, особенно альдегидов и кетонов. Следующие факторы обусловливают это сходство (а) нитрильная и карбонильная группы обладают поляризованными я-связями, по которым может происходить реакция нуклеофильного присоединепия (б) обе группы оказывают дезактивирующее и лima-opиeнтиpyющee действие на ароматическое кольцо, с которым они непосредственно связаны (в) обе группы, находясь у ненасыщенного атома углерода, способствуют нуклеофильной атаке по Р-углеродному атому и, следовательно, присоединению по а,Р-связям С == С или С = С (г) обе группы активируют а-водородные атомы, которые поэтому относительно легко замещаются или удаляются в виде протонов под действием подходящего основания, причем образуется карбанион, стабилизованный за счет делокализации избыточного отрицательного заряда. Вряд ли необходимо приводить большое число примеров для иллюстрации пунктов (б) — (г) поэтому изложение в данном разделе будет несколько сжатым и весь материал разбит на два подраздела реакции нуклеофильного присоединения по связи С = N и различные реакции, включающие примеры, иллюстрирующие пункты (б) - (г). [c.484]


Смотреть страницы где упоминается термин Альдегиды ненасыщенные, нуклеофильное: [c.227]    [c.51]    [c.35]    [c.479]    [c.402]    [c.188]    [c.109]    [c.51]   
Теоретические основы органической химии (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Альдегид р-ненасыщенный



© 2025 chem21.info Реклама на сайте