Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нитрат-ион реакции аниона

    Так как кислоты представляют соли гидроксония, то растворение металлов в кислотах представляет частный случай этого правила рядов вытесняется водород. Однако кислоты переводят осадок в раствор целиком (вследствие необратимости реакции), а соли металлов переводят в раствор или катион, или анион. Это позволяет проводить селективное растворение. Например, сульфат свинца растворяется в растворе карбоната натрия, вытесняя сульфат-ион в раствор. При взаимодействии осадка сульфата свинца с цинком выделяется свободный свинец и сульфат-ион переходит в раствор. Карбонат свинца легко растворим в кислотах. При этом РЬ " и сульфат-ион переходят в раствор. Если же растворять осадок сульфида свинца (П) действием раствора нитрата серебра, то сульфид-ион осаждается ионом серебра, а катион свинца переходит в раствор. Применяя реакции комплексообразования, можно растворять соли, не растворимые в кислотах например, сульфид мышьяка (1П) растворяется в растворе сульфида натрия, образуя тиоарсенит натрия. Осадок хлорида серебра при взаимодействии с раствором сульфида натрия превращается в менее растворимый сульфид серебра. [c.132]


    Практические работы по изучению анионов целесообразно построить по следующему плану изучение взимодействия анионов первой аналитической группы с нитратом серебра изучение характерных реакций анионов первой аналитической группы иззп1ение взаимодействия анионов второй аналитической группы с хлоридом бария изучение характерных реакций анионов второй аналити ской группы изучение характерных реакций анионов третьей аналитической группы анализ смеси анионов трех аналитических групп контрольная задача на смесь анионов трех аналитических групп. [c.105]

    Какие анионы входят в состав первой аналитической группы 2. Что является групповым реагентом на анионы первой группы 3. Написать уравнения реакций анионов первой группы с ионами бария 4. Как взаимодействуют анионы первой группы с нитратом серебра 5. Какие анионы первой группы являются восстановителями 6. Как определяют SO2 и СО2  [c.77]

    Разделить раствор на две части и доказать в одной из них присутствие ионов хлора добавлением нитрата серебра и азотной кислоты (азотная кислота добавляется для того, чтобы не выпадал осадок ортофосфата серебра). В другой части раствора обнаружить с помощью молибденовой жидкости присутствие аниона ортофосфорной кислоты. Написать уравнения соответствующих реакций. [c.187]

    Анионы же катионитом не поглощаются. Поэтому как в исходной водопроводной воде, так и в воде, прошедшей через катионит, ионы хлора обнаруживаются по реакции с нитратом серебра  [c.224]

    Синтез новых соединений. Реакции ионного обмена используются для получения неорганических соединений, синтез которых другими методами сложен. Например, растворимые нитраты металлов легко перевести в хлориды по реакции анионного обмена  [c.206]

    Регулирование pH в растворе с [Н ]< 10 . Если исследуемый раствор имеет щелочную реакцию и требуется увеличить концентрацию водородных ионов, то к исследуемому раствору прибавляют по каплям раствор хлористоводородной, азотной, уксусной кислоты, хлорида или нитрата аммония или растворы других солей, образованных катионами слабых оснований и анионами сильных кислот, или буферную смесь, pH которой имеет требуемое значение (см. табл. 3). [c.11]


    В 2 микропробирки налейте по 3—4 капли раствора ортофосфата натрия и к одной прилейте 3 капли раствора нитрата серебра, а к другой 3—4 капли раствора яичного белка. Наблюдайте, что происходит. Проведите аналогичные опыты с раствором метафосфата и пирофосфата натрия. Составьте уравнения реакций. Как отличить данные анионы друг от друга  [c.191]

    Среди аналитических реакций, применяемых для обндружения нитрат- и нитрит-ионов, есть реакции, общие для обоих анионов, [c.191]

    Какие анионы входят во вторую аналитическую группу 2. Что является групповым реагентом на анионы второй аналитической группы 3. Каковы реакции анионов второй группы с нитратом серебра 4. Как реагируют анионы второй группы с окислителями 5. Как анализируют нерастворимые соединения, содержащие анионы второй группы  [c.82]

    Ионы СЮ , ВгО и ло не мешают реакции. Анион надсерной кислоты реагирует аналогично йодной кислоте, но его можно устранить нагреванием кислого раствора с каплей раствора нитрата серебра . Реакция неспецифична. [c.223]

    Характерная реакция для аниона надсерной кислоты неизвестна. При нагревании кислого раствора с каплей раствора нитрата серебра анион надсерной кислоты разлагается с образованием аниона серной кислоты. [c.229]

    Реакции анионов III группы Нитраты, нитриты, хлораты и ацетаты Реакции нитрат-иона [c.221]

    РЕАКЦИИ АНИОНОВ UI ГРУППЫ. НИТРАТ. НИТРИТ 223 [c.223]

    Подготовка анионитов. Измельченный и просеянный товарный анионит обрабатывают насыщенным раствором хлорида натрия так же, как и катионит. Затем анионит переносят в делительную воронку и промывают 2%-ным раствором соляной кислоты до полного удаления ионов Ре +, обычно присутствующих в анионите (проба с роданидом аммония). После этого анионит промывают десятикратным объемом дистиллированной воды, сначала 5%-ным, а затем 10%-ным раствором гидроксида натрия до отрицательной реакции в фильтрате на хлорид-ион (проба с нитратом серебра). Заканчивают промывку анионита дистиллированной водой, освобожденной кипячением от диоксида углерода и затем охлажденной. Промывку прекращают после получения в фильтрате нейтральной реакции по фенолфталеину. [c.119]

    Аналитические реакции на анионы приведены на стр. 290—292. Чтобы определить, сильной или слабой является данная кислота, ис-пользуйте гидролиз ее натриевых или калиевых солей, основываясь на том, что гидроксиды натрия и калия — сильные щелочи. Следовательно, нейтральная реакция, например, водного раствора нитрата натрия будет указывать на то, что азотную кислоту следует считать сильной, а щелочная среда раствора карбоната натрия — на то, что угольная кислота слабая и т. п. Для сопоставления слабых кислот используйте данные о константах их диссоциации по первой ступени (стр. 324). [c.296]

    Методика определеиия нитрата калия. Полученную после титрования смесь подвергают ионному обмену на анионите АВ-17 в ОН-форме. Для этого раствор пропускают через анионит со скоростью 4 капли в 1 сек. После окончания реакции обмена анионит промывают малыми порциями метилового спирта, заканчивают промывание, пропустив через колонку 50 мл раствора спирта. Полученный раствор, содержащий эквивалентное количеству СГ- йЫО.я-ионов количество ОН -ионов, получаемых в результате анионного обмена нитрата и хлорида, оттитровывают стандартным метаноловым раствором хлористоводородной кислоты потенциометрическим методом в тех же условиях, как и при определении нитрита калия. [c.453]

    При кипячении суспензии белого фосфора в водном растворе гидроксида бария образуется газ А и растворимая. средняя соль В, в анионе которой имеется Р . Раствор делят на две части. Первую часть обрабатывают 250 мл 0,1 М раствора нитрата серебра (I) серебро полностью расходуется Б реакции, в продуктах которой обнаружена средняя соль бария С (анион содержит Р "). Найдите общую массу (г) осадка. Вторую часть раствора упаривают. При этом соль В кристаллизуется, ее обезвоживают, а затем прокаливают. Выделяется тот же газ А, а в остатке находится дифосфат бария. Составьте уравнения всех реакций. Назовите газ А, соли В и С. [c.238]

    Далее в настоящем параграфе рассмотрены аналитические реакции только трех вышеуказанных анионов — нитрит-, нитрат- и ацетат-ионов. Все они в водных растворах бесцветны. [c.464]

    В эту группу входят следующие анионы нитрат-ион N07, нитрит-ион N01 и ацетат-ион СН3СОО . Общего группового реактива анионы третьей группы не имеют. Бариевые и серебряные соли этих анионов растворимы в воде. Некоторые реакции анионов третьей аналитической группы приведены в табл. 10. [c.87]

    Наконец, следует упомянуть о влиянии комплексообразования и среды на скорость окислительно-восстановительных реакций и, Мр и Ри. Как уже было отмечено, многие ионы обладают склонностью к образованию более нли менее прочных комплексов с анионами кислот, что отражается на кинетике реакций окисления и восстанов- ления. В общем случае можно сказать, что связывание некоторой доли реагирующих ионов в комплекс должно вызвать уменьшение скорости. К такому результату приводит обычно комплексообразование с нитрат-ионами. Однако сульфатные и хлоридные комплексы оказываются часто более реакционноспособными, чем простые гидратированные ионы. Например, реакции восстановления Ри (IV) двухвалентным железом и четырехвалентным ураном, окисления и (IV) трехвалентным таллием и четырех- валентным нептунием ускоряются в присутствии сульфат-ионов. С другой стороны, на реакцию между Мр (V) и Мр (III) эти ионы не оказывают действия. Хлоридные комплексы Ри (IV), Ри (VI) и 5п (II) реагируют значительно быстрее, чем простые ионы этих металлов, однако при акции с И (III) и V (III) комплексообразование (IV) с хлор-ионами не оказывает заметного влияния скорость. Комплексообразование продуктов реакции анионами кислот также влияет на кинетику, если ско- Ьсти прямой и обратной реакций не сильно отличаются эуг от друга. Заметное ускорение дисиропорционирова-Ы Мр (V) в присутствии 80 -ионов объясняется обра- [c.17]


    Элементы (1), которые в наиболее устойчивом валентном состоянии находятся в растворах в виде анионов кислот, извлекаются по реакциям анионного обмена, закономерности которых приведены в гл. 4. Извлечение этих элементов, очевидно, должно снижаться при увеличении концентрации нитрат-ионов в водном растворе. Такой характер носит, например, извлечение молибдена (VI) в форме анионов полимолибдата нитратом ТДА из азотнокислых растворов [256]. [c.99]

    Соли аммония, анион которых проявляет более резко выра-жснтле окислительные свойства, распадаются необратимо протекает окислнтельно-восстаповительная реакция, в ходе которой ион аммония окисляется, а анион восстанавливается. Примерами могут служить распад МЕ 141 Ю2 ( 136) или разложение нитрата аммо.ь ня  [c.403]

    При сливании водных растворов реагирующих между собой веществ происходят реакции не между молекулами, а между ионами. Например, взаимодействие растворов нитрата серебра и хлорида натрия представляет собой реакцию катионов серебра и анионов хлора, сопро-иождающуюся образованием осадка хлорида серебра Ag l  [c.66]

    Эта реакция обусловлена сильным притяжением небольшим ионом LI+ кислорода соответствующих анионов (при нагревании нитратов других щелочных металлов сначала образуется нитрит ЭЫОг). [c.306]

    Метод Фольгарца широко применим для определения не толь ко серебра, но и многих анионов. Схема определения такова. К исследуемому раствору аниона цобавляют точно отмеренный объем титрованного раствора нитрата серебра, взятый в избытке, нужное количество кислоты и индикатор. Серебро количественно осаждает анион, а не вошедшее в реакцию его избыточное количество титруют раствором роданида аммония до появления розовой окраски. Зная взятое количество раствора серебра и найденное титрованием его количество, не вошедшее в реакцию с определяемым анионом, находят количество серебра, пошедшее на осаждение определяемого аниона. [c.108]

    Некоторые соли разлахаются при нагревании. Эти реакции rie цифичны для разных типов солей (ход реакции определяется как анионом, так и катионом). Информацию о термическом разложении солей Вы найдете в Справочной части в разделах, посвященных соответствующим солям (по типу аниона - карбонаты, нитраты и т. д.). [c.159]

    Реакция с нитратом серебра. 2—3 капли исследуемого раствора помещают в пробирку, прибавляют 3—4 капли 2 н. раствора HNO3 и 2—3 ктпли раствора AgNOg. Образование осадка указывает на присутствие анионов I группы. [c.174]

    В правой части приведенной схемы реакции содержится 6 анионов ЫОз, участвующих в образовании трех молекул нитрата меди. В соответствии с этим в левую часть схемы вводим бНЫОз — на солеобрЗ зование  [c.289]

    Анионы-восстановители (8 , I", С1 ) восстанавливают в кислой среде ионы МПО4 , вызывая их обесцвечивание. Ионы-окислители (N03 , Сг042-, УОз , Мо04 ) окисляют иодид-ионы в кислой среде до свободного иода, окрашивают дифениламин в синий цвет. Эти свойства используются для качественного анализа. Окисли-тельно-восстановительные свойства хромат-, нитрат-, иодид-, вана-дат-, молибдат-, вольфрамат-ионов лежат в основе их характерных реакций. [c.204]

    Методика. В микротигель вносят 5—6 капель анализируемого раствора, прибавляют 5—6 капель концентрированной ЬТМОз и осторожно выпаривают смесь досуха. При этом разрушаются мешающие анионы-восстановители. К полученному сухому остатку прибавляют 3 капли концентрированной HNO3, кристаллик нитрата аммония NH4NO3 (для повышения чувствительности реакции) и 9—10 капель раствора молибдата аммония. Если образуется желтый кристаллический осадок фосфоромолибдата аммония (КН4)з[Р04(МоОз)12] или же смесь окрасится в желтый цвет, то это указывает на присутствие ортофосфат-ионов в исходном анализируемом растворе. [c.487]

    Осаждение анионов 2-й, 3-й, 4-й групп, а. К части испытуемого раствора нагретого до 60—70° С и имеющего нейтральную или слабощелочную реакцию, добавляют несколько капель насыщенного раствора Sr(NO i)a- Если выделяется осадок, то он может содержать 5г(50з), Sr(SOi), Sr.,(P04)a, 5гз(Аз04)з, Sr Oa. Осадок центрифугируют. Центрифугат сохраняют для дальнейших испытаний. Осадок тщательно промывают холодной водой до полного удаления нитратов и роданидов. Промывные воды отбрасывают. [c.263]

    Высокая реакционная способность аллилгалогенидов в реакциях 8м1-замещв-иия объясняется уменьшением энергии активации образования аллил-катиона главным образом вследствие резонанса. В то же время резонанс уменьшает нуклеофильность различных анионов за счет делокализации их заряда, вызывая тем самым стабилизацию этих частиц. К анионам, стабилизированным вследствие резонанса, относятся нитрат N0 , сульфат 8О 0 и фосфат РО 0. Имея в виду, что резонансные структуры отличаются только распределением электронов, нарисуйте по две резонансные структуры для каждого из этих ионов, стараясь свести число формальных зарядов на каждом носителе заряда к ми-шшуму. Какое максимальное число эквивалентных резонансных структур возможно для каждого из этпх ионов  [c.211]

    В расплавленном нитрате тетра-н-бутиламмония (при 150°С) возможно катодное алкилирование анионов углеводородов [106]. В этих условиях восстановление незамещенных полнци-клических ароматических углеводородов протекает в одну двухэлектронную стадию. Восстановление антрацена при потенциале такой волны приводит к 9-н-бутилантрацену. Указанный потенциал близок к предельному значению, прн котором происходит образование три-н-б>тиламина и бутена. Одиако нафталин прн этом потенциале не восстанавливается и не алкилнруется, и поэтому предполагают, что реакция алкилирования антрацена протекает путем взаимодействия его анион-радикала с H-BU4N+. [c.259]

    Большей чувствительностью отличается осаждение калия в виде K2Ag[ o(N02)6] [888] К нейтральному разбавленному раствору соли калия добавляют немного 0,02 N раствора AgNOз и избыток концентрированного раствора нитрокобальтиата на- трия при этом выпадает желтый осадок нитрокобальтиата калия и серебра В отсутствие калия осадок не образуется. Метод позволяет обнаруживать калий при разбавлениях до 1 10 [1271, 1912]. В исследуемом растворе должны отсутствовать хлориды и другие анионы, осаждаемые нитратом серебра. Соли аммония, рубидия, цезия дают такую же реакцию, как и соли [c.14]


Смотреть страницы где упоминается термин Нитрат-ион реакции аниона: [c.222]    [c.400]    [c.150]    [c.161]    [c.238]    [c.206]    [c.241]    [c.143]    [c.69]    [c.266]    [c.98]    [c.724]   
Аналитическая химия (1963) -- [ c.149 ]




ПОИСК





Смотрите так же термины и статьи:

Нитрат-ион, реакции

Третья группа анионов Реакции нитрат-иона



© 2025 chem21.info Реклама на сайте