Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нитрат III группы

    Все металлы, приведенные в табл. 22.1, можно разделить на три группы. К первой из них относятся металлы, выделяющиеся из водных растворов или совсем без перенапряжения (ртуть), или с очень малым перенапряжением, не превышающим при обычных плотностях тока тысячных долей вол1>та (серебро, таллий, свинец кадмий, олово). Для этой группы металлов (кроме ртути) наибо лее отчетливо проявляются неустойчивость потенциала во времени сложный характер роста катодного осадка и другие особенности свойственные процессу катодного выделения металлов. При про мышленных плотностях тока эти металлы дают грубые осадки Токи обмена для металлов этой группы очень велики. Так, напри мер, ток обмена между металлическо) ртутью и раствором ее ниг рата превышает 10 А-м а между серебром и раствором нитрата серебра достигает 10 А-м  [c.459]


    Целлюлоза нерастворима в воде, имеет молекулярную массу от 250 ООО до 1 ООО ООО и более. Она содержит много гидроксильных групп и способна набухать в растворах щелочей. Важнейшие методы переработки целлюлозы основаны на переведении ее в эфиры нитраты, ацетаты целлюлозы, которые растворимы в ацетоне, хлороформе и других растворителях. Эфиры целлюлозы используют для получения фотопленки и волокна (ацетатный шелк). Крахмал набух.ает в холодной воде, он содержит 20% растворимой в горячей воде фракции. Из крахмала гидролизом получают декстрин, патоку, глюкозу. [c.307]

    В природе существуют микроорганизмы, вызывающие процесс денитрификации, т. е. восстановление азотнокислых солей до газообразного азота. Эти бактерии относятся к группе факультативных анаэробов. Процесс денитрификации протекает при наличии в среде безазотистых веществ углеводов, клетчатки, солей летучих жирных кислот и др. Такие вещества окисляются освободившимся из нитратов кислородом. Очевидно, в этом заключается энергетический смысл процесса. Схематически процесс денитрификации можно записать уравнением [c.265]

    Например, при изготовлении смешанных катализаторов на основе окислов металлов VHI группы раствор нитратов таких металлов смешивают с карбонатом натрия при температуре 75° С, что приводит к образованию осадка, который промывают. Только после этого полученный материал направляют на смешение. В другом случае осадок получают при добавлении карбоната калия к раствору нитратов металлов (никеля и др.), содержащего гидроокись алюминия. Полученную массу отфильтровывают, промывают, сушат и прокаливают. И только после этого полученный материал направляют на смешение и последующую переработку. Иногда часть полученною катализатора после высокотемпературной прокалки измельчают и возвращают в цикл, направляя на стадию смешения с исходными материалами. [c.21]

    На смешение направляют измельченные активные компоненты катализатора (металлы или окислы металлов VHI группы), наполнители (глинозем, магнезит и другие тугоплавкие материалы), связующее (цемент), воду или водный раствор кислоты (соли). Например, карбонат никеля, окись магния и пластическую глину смешивают в смесителе в течение 15 мин. Затем в смеситель добавляют водный раствор нитрата натрия и смешение продолжают еще 40 мин до получения однородной смеси. В другом примере смешение [c.21]


    Для разделения кипящих при близких температурах углеводородов с различным числом и характером п-связей методами экстрактивной ректификации и экстракции предложено большое число полярных органических веществ различных классов, содержащих кислород, серу и фосфор кетоны, альдегиды, спирты, эфиры, амины, нитрилы, нитраты, карбонаты, лактоны, амиды карбоновых, серусодержащих и фосфорсодержащих кислот, лак-тамы, сульфоксиды и др. [5—7]. Однако лишь небольшая группа растворителей из общего числа предложенных в литературе отвечает необходимым требованиям, предъявляемым к экстрагентам разделения близкокипящих углеводородов С4 и С5. Важнейшими из этих требований являются требования к селективности и растворяющей способности экстрагентов по отношению к разделяемым углеводородам. [c.669]

    В нем хорошо растворяются вода, фториды, сульфаты и нитраты s-элементов I группы, несколько хуже аналогичные соединения s-элементов II группы. При этом растворенные веш.ества, отнимая от молекул НР протоны, увеличивают концентрацию отрицательных ионов (HFj), т. е. ведут себя как основания. Например  [c.284]

    В зависимости от того, возвраш аются эти продукты в процесс, или после отделения карбамида используются в других производствах (например для получения нитрата аммония), технологические схемы производства карбамида делятся на две группы  [c.272]

    Носитель пропитывают соединением щелочноземельного металла (гидроокись) нитратом. формиатом Ва, Са, Сг и соединением металла Ре-группы (ацетат, нитрат, формиат, хлорид, сульфат, фторид, бромид N1. СО. Ре), сушат при температуре 95—205° С и прокаливают при 590—760° С [c.79]

    Если центральный атом комплексного иона окружен несколькими равноудаленными от него атомами, число окружающих атомов называется координационным числом центрального атома. Координационное число зависит главным образом от размеров центрального атома и окружающих его атомов или групп. Вокруг атома азота в нитрат-ионе, КОз, могут расположиться три атома кислорода, поэтому координационное число азота по отношению к кислороду равно 3. Атом серы больше атома азота, поэтому в сульфат-ионе, ЗО , содержится на один атом кислорода больше, чем в нитрат-ионе. Следовательно, координационное число серы по отношению к кислороду равно 4. [c.34]

    Грефф с сотрудниками предложили [119] метод, также основанный на взаимодействии нитрата кобальта и роданистого аммония с этоксильными группами. [c.189]

    За последние двадцать лет проведено много работ, в результате которых было найдено значительное количество присадок. Из различных групп соединений, подвергавшихся исследованиям и проверке, наиболее эффективными оказались нитраты и перекиси различных типов. [c.93]

    В качестве присадок, снижающих коррозию продуктами сгорания сернистых топлив, успешно испытаны некоторые жирные амины [28], например амины молекулярной массы 85—90 с содержанием азота 9—11%. Добавление 0,8% этой присадки к сернистому дизельному топливу позволяет значительно снизить коррозию деталей цилиндро-поршневой группы продуктами сгорания. Положительные результаты дает в аналогичном топливе добавление нитратов или карбонатов щелочных металлов [12] износ поршневых колец двигателя значительно снижается. Коррозионный износ деталей двигателя при применении сернистых дизельных топлив уменьшается также при добавлении нафтенатов некоторых металлов, например цинка. Так, добавление 0,3% этой присадки к дизельному топливу с содержанием серы около 1% позволило снизить износ примерно в 2 раза и довести его до значений, не превышающих износ при применении малосернистого топлива. Количество нагара при добавлении этой присадки не уменьшается, поэтому в случае ее введения в топливо в масле должна обязательно содержаться противонагарная присадка [18]. [c.184]

    В соответствии с принципом использования тепла все существующие варианты технологического процесса производства нитрата аммония делятся на две группы  [c.264]

    Ароматические нитросоединения нолучаются обычно прямым нитрованием соответствующих соединений. Ароматические нитросоединения применяются в больших количествах как красители и взрывчатые вещества, а также в парфюмерной промышленности. Они используются также в качестве растворителей и химических реагентов. Нитрогруппа может действовать как хромофорная группа в красителях, особенно если имеется несколько нитрогрупн и они располагаются в кольце таким образом, что становятся частью сложной сопряженной системы. Значительно чаще нитрогруппа используется как исходная группа для получения соответствующего анилина в результате применения восстановления в довольно мягких условиях. Использование нитросоединений в промышленности взрывчатых веществ направлено в первую очередь на военные цели. Промышленное производство взрывчатых веществ основано больше на нитроглицерине, т. е. на сложном эфире азотной кислоты, чем на истинных нитросоединениях. Некоторым, весьма существенным исключением являются нитрокарбонитратные пороха, содержащие нитрат аммония и незначительные количества тринитротолуола или динитротолуола. В парфюмерной промышленности нитросоединения используются в качестве синтетических мускусов. Большая группа производных полинитро-/к/)т-бутилбензола обладает запахом, напоминающим мускус. [c.543]


    В данном случае предполагается, что IУ, -у и не зависят от температуры. Экспериментальные данные Савицкого и др. [119], представленные на рис. 3,7, подтверждают это предположение для исследованных образцов пленки нитрата целлюлозы и одиночного волокна ПА-6. Для каждого материала при описании всех экспериментальных точек необходима лишь одна группа констант. Для нитрата целлюлозы авторы получили /о=159 кДж/моль, у = 644-10 мкмоль, /о=Ю- с, а для ориентированного ПА-6 (капрон) Уо=184 кДж/моль, у = = 113-10- 5 м /моль, 0= Ю- з с. [c.284]

    Помимо простых (одноатомных) ионов в соединениях могут образовываться комплексные (многоатомные) ионы. В состав комплексного иона входят атом металла или неметалла, а также несколько атомов кислорода, хлора, молекулы аммиака (NH3), гидроксидные ионы (ОН ) или другие химические группы. Так, сульфат-ион, SO , состоит из атома серы и четырех окружающих его атомов кислорода, занимающих вершины тетраэдра, в центре которого находится сера общий заряд комплексного иона равен — 2. Нитрат-ион, NO , содержит три атома кислорода, расположенных в вершинах равнобедренного треугольника, в центре которого находится атом азота общий заряд комплексного иона равен — 1. Ион аммония, NH4, имеет четыре атома водорода в вершинах тетраэдра, окружающего атом азота, и его заряд равен + 1. Все эти ионы рассматриваются как единые образования, поскольку они образуют соли точно таким же образом, как и обычные одноатомные ионы, и сохраняют свою индивидуальность во многих химических реакциях. Нитрат серебра, AgNOj, представляет собой соль, содержащую одинаковое число ионов Ag " и NOj. Сульфат аммония-это соль, в которой имеется вдвое больше ионов аммония, NH , чем сульфат-ионов, SOj она описывается химической формулой (NH4)2S04. Другие распространенные комплексные ионы указаны в табл. 1-5. [c.33]

    Решение. Группа N03 представляет собой нитрат анион, заряд которого равен — I, N0 . Лиганды ЫНз - нейтральные молекулы С1-координированный хлорид-ион, заряд которого, следовательно, равен — 1. Сумма всех заря- [c.371]

    Ковалентные нитраты. Группа ковалентных нитратов, если исключить органические производные, ограничивается соединениями водорода, фтора и. хлора ( INO3 в виде жидкости, устойчивой при —40 °С, удалось приготовить из безводной HNO3 и 1F в стеклянном реакторе или в сосуде из нержавеющей стали [c.589]

    Металлический палладий в отличие от других металлов платиновой группы растворяется в азотной кислоте. При взаимодействии с дымящей азотной кислотой образуется Р(1(ЫОз)2, в разбавленной (20%-ной) азотной кислоте получаются соединения, в состав которых входят нитрозо- и нитрато-группы. Палладий растворяется также в концентрированной серной кислоте, образуя бурый раствор сульфата палладия. [c.10]

    Простые нитраты платины неизвестны. Получены смешанные комплексные соединения четырехвалентной платины с нитрато-группами в сочетании с ОН , МОг и МНз во внутренней сфере. [c.43]

    Предполагается [150], что молекулы HNO3 присоединяются к дисольвату за счет образования водородных связей между атомом водорода кислоты и атомом кислорода нитрато-группы. [c.309]

    Р0 , НРО и НгРО ). Скорость реакции обмена во многих случаях существенно зависит от pH среды. Щелочи ускоряют обмен в бихроматах, хлоратах, иодатах, но заметно тормозят обмен в хроматах, нитратах, сульфитах и тиосульфатах. В кислой среде ускорение реакции обмена наблюдается для хроматов, хлоратов, нитратов. Для органических кислородных соединений установлено, что скорость обмена кислорода карбонильной и карбоксильной групп зависит от кислотности среды. Интересно, что с увеличением силы кислоты обмен облегчается. Это можно видеть на примере уксусной, моио-хлоруксусной и трихлоруксусной кислот. Скорость обмена растет при переходе от уксусной через монохлоруксусную к трихлоруксусной кислоте. Кислород спиртовых и фенильных гидроксильных групп обычно не подвергается обмену. Однако у третичного спирта трианизолкарбинола можно обнаружить обмен, катализируемый кислотами. В сахарах обменивается только один атом кислорода. [c.374]

    При попытке объяснения такой зависимости фактора разделения необходимо иметь в виду, что аммонийный азот не образует непосредственной связи с металлом [5], а взаимодействует лишь с нитратным комплексом, входя во внешнюю сферу этого комплекса. Изменение строения внешне-сферного катиона может оказывать влияние на прочность связи металла с кислородом нитрато-группы в нитратном комплексе или на прочность водородной связи между нитратным комплексом и аммонийным азотом. Некоторые сведения о прочности этих связей может дать изучение тепловых эффектов реакции и ИК- и ЯМР-спектров экстрагированных комплексов. [c.213]

    Присадки, снижающие лако-, нагарообразование и износ цилинд-ро-поршневой группы двигателя. Такие присадки предназначены для добавления к сернистому дизельному топливу для нейтрализации агрессивных продуктов сгорания (окислы серы, главным образом трехокись). К ним относятся амины, нитраты и карбонаты щелочных металлов, нефтенаты металлов и др. Большое значение в снижении нагаров и износов в двигателе имеют присадки к применяемому маслу. [c.205]

    Для металлов переходных групп характерна сильно пониженная способность к растворению в кислотах и к анодному растворению после обработки поверхности этих металлов окислителями. Такое состояние металлов называется пассивностью. Для хрома, золота и платины достаточно воздейстиия кислорода воздуха для того, чтобы эти металлы перешли в пассивное состояние. Если железо погрузить в концентрированную азотную кислоту, то оно становится пассивным и не растворяется в разбавленной азотной кислоте. Можно перевести в пассивное состояние железо, хром, никель и другие металлы, обработав их окислителями, например опустив в раствор бихроматов, нитратов и др. [c.635]

    В особую группу следует выделить синтезы на основе оксида углерода, водорода и азота метанола (3 процесса), муравьиной кислоты (2 процесса), метиламинов (2 процесса), метилформиата, аммиака (4 процесса), нитрата аммония (2 процесса), азотной кислоты (2 процесса), карбамида и одноклеточных белков. В каталог современных нефтехимических процессов последняя группа синтезов входит вследствие привязки к нефтяному углеводородному сырью через процессы конверсии метана и жидких нефтяных дистиллятов в оксид углерода н водород. Главным ядром данной группы процессов являются метанол и аммиак, которые потребляются в значительных количествах для производства эфиров различных алифатических и ароматических кислот, а также, аминонроизводных, поэтому входят в состав нефтехимической продукции и нефтехимического сырья. [c.358]

    Реакцию замещения на нитратную группу в условиях МФК еще не проводили. Однако было показано, что в гомогенных условиях в присутствии агентов, дающих комплекс с катионом соли, нитрат-ион является очень сильным нуклеофилом. В зависимости от типа растворителя ацетобромглюкоза и система нитрат серебра/криптофикс [222] дают смесь продуктов сольволи-за А и нитратных эфиров В. Соотношение этих продуктов изменяется от А В = 98 1 в метаноле до О 100 в диглиме [84]. [c.139]

    Разработаны схема непрерывного, полностью автоматизированного процесса сульфирования масел газообразным серным ангидридом в жидком сернистом ангидриде [а. с. СССР 138615 2, с. 141 21, с. 139] пособ получения эффективных сульфонатных присадок при использовании водного раствора нитрата кальция для нейтрализации. сульфокислот промышленная технология высокощелочных присадок НГ-102 и НГ-104 с большей моющей способностью и предложен способ получения присадки НГ-104, обладающей высокими моющими и диспергирующими свойствами и хорошей стабильностью при длительном хранении масла [15, с. 69]. Во ВНИИ НП разработан высокозольный сульфонат (присадка ПМС) с 3,5—5-кратным избытком металла против стехио-метрического количества [1, с. 158 с. 145], создан процесс сульфирования масла газообразным серным ангидридом в пленочном роторном сульфураторе непрерывного действия, ранее применявшемся для сульфирования синтетических алкилбензолов. Бутков, Филиппов и Барабанов [1, с. 95] разработали способ получения магнийсульфоносульфонатной присадки ВНИИ НП-121 путем предварительного окисления масла М-11 из сернистых нефтей. Авторами составлен ряд товарных композиций с использованием этой присадки такие композиции можно добавлять к маслам различных групп для карбюраторных и дизельных двигателей. [c.68]

    Нитрат целлюлозы (часто называемый "нитроцеллюлозой") был открыт в 1838 г. Свойства нитрата целлюлозы сильно зависят от степени нитрования. Теоретически целлюлозное звено [-С5Н702(0Н)з-] можно нитровать в три стадии, в каждой из которых гидроксильная группа замещается на нитратную группу. Применяемые на практике нитроцеллюлозы П11едставляют собой соединения, промежуточные между динитратом и тринитратом, причем не чистые соединения, а смеси эфиров. В работе [Кеас1,1942] даны три класса нитроцеллюлозы, различающиеся содержанием в ней азота (выражено в процентах)  [c.165]

    Под действием соляной кислоты происходит частичное замещение гидроксильных групп полиола хлором и образование ангидро-производных [38]. Наиболее важными из производных неорганических кислот являются нитраты полиолов получают их нитрованием смесью азотной и серной кислот при низкой температуре. Все полностью нитрованные продукты являются взрывчатыми веществами. Гексанитрат маннита является хороши.м лекарством, превосходящим по своему действию нитроглицерин и амилнитрит. [c.18]

    Для дизельных топлив прямой гонки нитроалканы, нитрокар-бомиты и нитраты дают практически одинаковое повышение цетанового числа. Для топлив из газойлей каталитического крекинга эти три группы продуктов дают разный эффект. Из четырех групп соединений пероксиды обладают наименьшей эффективностью. Характерно, что перекиси и нитроалканы сохраняют свою эффективность на одинаковом уровне для топлив прямой гонки и каталитического крекинга. Нитраты и нитрокарбомиты при использовании в топливах каталитического крекинга сни- [c.94]

    Катализаторы для гидрирования можно распределить на две группы 1) металлы и 2) окислы. К первой группе относятся в первую очередь мелкодиспергированные металлы УП1 группы периодической системы—Ni, Со, Pt, Pd и другие элементы платиновой группы, а также Си. Из катализаторов для гидрирования наиболее часто применяют Ni, который иногда более активен, чем Pt или Pd (Ni Ренея). Для получения катализаторов пользуются методами, описанными выше (стр. f,0) обжигом нитратов или солей органических карбоновых кислот, осаждением щелочами из растворов солей, обработкой сплавов, получением в коллоидном состоянии. [c.339]

    Ацетальдегид представляет собой легкоподвижную жидкость с резким опьяняющим запахом (т. кип. 2Г), хорошо растворим в воде, весьма склонен к полимеризации. При прибавлении одной капли концентрированной серной кислоты к безводному ацетальдегиду он превращается в тримерный паральдегид (СНзСНО)з. Реакция протекает настолько бурно, что при этом может происходить вскипание жидкости. При 0° из ацетальдегида под влиянием небольпшх количеств серной кислоты или НВг + Са(N03)2,получается другая полимерная форма — метальдегид. Паральдегид представляет собой жидкость (т. кип. 124°), метальдегид — твердое вещество. Оба полимера не восстанавливают аммиачного раствора нитрата серебра, не осмоляются при действии щелочей и, следовательно, не содержат альдегидных групп. Одиако они довольно легко, например при перегонке с разбавленной серной кислотой и даже при нагревании с водой, постепенно превращаются снова в мономолекулярный ацетальдегид. На основании этих свойств, а также криоскопического определения молекулярного веса строение обоих альдегидов лучше всего может быть выражено циклическими формулами для паральдегида — (1), для метальде-гида — (II)  [c.213]

    Глиоксиловая кислота обладает свойствами и карбоновой кислоты и альдегида восстановление ею аммиачного раствора нитрата серебра и образование гидразонов обусловлены наличием альдегидной группы. При кипячении со щелочью глиоксиловая кислота превращается в гликолевую и щавелевую кислоты  [c.327]

    Ингибиторы анодного действия содержат в молекуле углеводородный радикал и функциональную группу с электронодонорными свойствами. На рис. А представлена схема взаимодействия анодных ингибиторов (нитратов и сульфонатов) с поверхностью металла. В этом случае на металле образуется положительно заряженный слой диполей, способствующий уменьшению энергии выхода электронов. Ингибиторы этого типа адсорбируются на анодных участках корродирущего металла, изменяют фазовый состав поверхностного слоя металла, обладают высокими защитными свойствами по отношению к черным и цветным металлам. [c.58]

    Из алкилнитратов применяются метил-, этил-, бутил- и амилни-траты в нейтральной или щелочной среде. Нитраты обладают способностью растворять многие органические соединения. Этим методом нитруют пиррол, амиды и соединения, содержащие активную метиленовую группу — малоновый и ацетоуксусный эфиры — в присутствии алкоголятов калия или натрия. [c.91]

    Какие выводы можно сделать об изменении термической устойчивости, например, нитратов и карбонатов по группе редкоземельных металлов (из-ыеиенин силы основания Льюиса, донорной активности оксидов М2О3) - [c.608]

    При осторожном проведении реакции протолиза растворов солей железа(III) (нитрата, сульфата, аммонийсульфата) при pH 2,2 наблюдается появление красно-коричневого окрашивания вследствие образования коллоидных растворов, содержащих изополиоснования [РеО(ОН)]д . Эти частицы образуются путем конденсации одноядерных гидроксокомплексов. При дальнейшем повышении рЧ раствора происходит полное осаждение железа в виде РегОз-ац. Исследование этих осадков методами ИК-спектроскопии и ЯМР указывают на присутствие в них ОН-групп, что дает основание называть их конденсированными гидроксидами. При старении осадков и при их нагревании процессы конденсации приводят к продуктам с меньшим содержанием воды и в конце концов к безводному оксиду а-Ре20з гематит). [c.637]


Смотреть страницы где упоминается термин Нитрат III группы: [c.589]    [c.90]    [c.179]    [c.464]    [c.36]    [c.55]    [c.496]    [c.20]    [c.62]    [c.157]    [c.427]    [c.66]   
Курс аналитической химии Издание 5 (1981) -- [ c.207 ]




ПОИСК





Смотрите так же термины и статьи:

Нитрат катионов II группы

Серебра нитрат сульфгидрильных групп

Третья группа анионов Реакции нитрат-иона



© 2025 chem21.info Реклама на сайте