Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кремний, определение в железе цинке

    Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, например, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др. медные сплавы — олово, цинк, СБ1 н ц, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.453]

    Железо, кальций, магний, марганец, титан, медь, кремний, никель и цинк (до 0,5 мг) не мешают определению [c.191]


    Следующий метод основан на применении закона Генри (так называемого закона распределения ) и заключается в титровании борной кислоты, экстрагированной эфиром из водного раствора, содержащего, помимо борной кислоты, соляную кислоту и спирт 1. Этот метод удобен для рядовых определений бора (в пределах 0,3—16% B Og) в стекле. Кремний, кальций, барий, магний, алюминий, натрий, литий, железо, цинк, свинец и мышьяк в количествах, обычно встречающихся в стекле, не мешают определению. В присутствии фтора получаются пониженные результаты. [c.840]

    Третий компонент в латуни прежде всего изменяет ее структуру. Диаграммы состояния тройных латуней изучены недостаточно, поэтому для определения ожидаемой структуры исходят из представления о так называемых коэффициентах замены цинка (коэффициенты эквивалентности). Третий элемент действует на структуру латуни так же, как и цинк, но эффект от добавки 1 % элемента иной. Приняты следующие значения коэффициентов эквивалентности для кремния 10—12, алюминия 4—б, олова 2, свинца 1, железа 0,9, марганца 0,5 и никеля минус 1,3, т. е. все добавки сужают -область, а никель расширяет. [c.218]

    Для анализа использован атомно-абсорбционный СФМ Перкин-Элмер , модель 303. Условия определения каждого элемента взяты из рекомендаций фирмы-изготовителя прибора. В расчете на анализ 2%-ного раствора достигнуты следующие пределы обнаружения (в мкг/г) литий, натрий — 0,1, калий — 0,3, магний, цинк, кадмий — 0,5, кальций—1,0, серебро—1,5, медь — 2,5, сурьма — 3, железо, никель — 5, свинец—10, алюминий, кремний, олово—50, титан—70, ртуть—100, бор—1000. [c.218]

    Оксалат- и фторид-ионы, а также железо (ПГ) в малых количествах не мешают. При определении 1 мг/л фосфора (V) с точностью 2% следующие элементы не мешают, присутствуя в концентрациях до 1000 мг/л алюминий, кадмий, хром (III), медь, кобальт, кальций, марганец (II), никель, цинк, кремний, ванадий [c.1093]

    Интересный способ определения содержания кобальта в солях никеля состоит в предварительном окислении o + до Со " перборатом натрия в аммиачном буферном растворе [16]. После разрушения избытка окислителя сульфатом гидроксиламина раствор полярографируют в пределах от —0,2 до —0,8 в. Потенциал полуволны Со + равен —0,4 в. Определению не мешают мышьяк, кадмий, сурьма, олово, цинк и, если находятся в умеренных количествах, висмут, медь, железо, марганец, молибден. Свинец н хром, присутствующие в больших количествах, удаляют путем осаждения хлоридом бария или сульфатом натрия. При содержании кобальта около 0,1% ошибка определения не превышает 2,6%. В 0,01 М растворе триэтаноламина и 0,1 М растворе КОН было определено содержание свинца и железа в пергидроле и меди, свинца и железа в плавиковой кислоте и фториде аммония в количестве 1.10 —5.10 % [17]. В растворе фторидов проводилось также определение олова, основанное на получении его комплексных ионов [18]. Разработан метод определения растворимой окиси кремния в уранилнитрате, основанный на полярографическом восстановлении кремнемолибденового комплекса [19]. Можно определить 2 мкг ЗЮг с точностью до 10%. Мешают ванадий и железо. [c.83]


    ИСО 11885 устанавливает метод определения растворенных и нерастворенных элементов, а также их общего количества в питьевой воде и в природных и сточных водах атомно-эмиссионной спектроскопией. Данным методом можно определять алюминий, барий, бериллий, бор, ванадий, висмут, вольфрам, железо, кадмий, калий, кальций, кобальт, кремний, литий, магний, марганец, медь, молибден, мышьяк, натрий, никель, олово, свинец, селен, серебро, серу, стронций, сурьму, титан, фосфор, хром, цинк, цирконий. [c.334]

    Согласно табл. 36 (см. стр. 158) калий, натрий, кальций, магний при поддержании определенной плотности тока и концентрации не смогут выделяться на катоде. Металлы, имеющие по сравнению с алюминием более электроположительный потенциал — такие, как медь, железо, кремний, цинк и др., если они содержатся в анодном сплаве, будут накапливаться в нем, не переходя в электролит. Если же в электролите будут содержаться ионы этих металлов, то они в первую очередь будут разряжаться на [c.319]

    Медь, цинк и кремний в тех количествах, в которых они присутствуют в чистом алюминии, определению не мешают. Метод применим при содержании железа от 0,0005% и более. [c.11]

    Определению не мешают алюминий, железо, кремний, марганец (до 1% каждого), магний, медь, цинк (до 5% каждого), хром (до 0,5%). [c.138]

    Изучив условия поведения магния на анионитах и зная поведение всех элементов, входящих в магниевый сплав, мы применили следующую методику определения цинка в магниевых сплавах, содержащих цинк, магний, алюминий, марганец, медь, железо и кремний, используя ионный обмен. [c.94]

    Титан губчатый. Технические условия Титан и сплавы титановые деформируемые. Марки Сплавы титановые. Методы определения алюминия Сплавы титановые. Методы определения ванадия Сплавы титановые. Метод определения хрома и ванадия Сплавы титановые. Методы определения вольфрама Сплавы титановые. Методы определения железа Сплавы титановые. Методы определения кремния Сплавы титановые. Методы определения марганца Сплавы титановые. Методы определения молибдена Сплавы титановые. Методы определения ниобия Сплавы титановые. Методы определения олова Сплавы титановые. Метод определения палладия Сплавы титановые. Методы определения хрома Сплавы титановые. Методы определения циркония Сплавы титановые. Методы определения меди Сплав титан-никель. Метод определения титана Сплав титан-никель. Метод определения никеля Титан губчатый. Методы отбора и поготовки проб Титан губчатый. Метод определения фракционного состава Сплавы титановые. Методы спектрального анализа Титан и сплавы титановые. Метод определения водорода Титан и титановые сплавы. Методы определения кислорода Титан губчатый. Метод определения твердости по Бринеллю Свинец, цинк, олово и их сплавы Олово. Технические условия [c.579]

    Двувалентное железо, а также алюминий, кремний, кальций, щелочи, цинк, мышьяк, фосфор и магний при титровании не вредят, в противоположность хлористому олову, закиси ванадия, воль раму и с -рнистой кислоте. 1егко удается определить очень малые количества титана в присутствии больших количеств железа. Определение производят следующим образом 1 г просеянного вещества разлагают сплавлением [c.56]

    Распознование типа сплава. Обнаружение в сплавах тех или иных химических элементов проводят преимущественно дробным методом при помощи микрокристаллоскопических и капельных реакций. Однако прежде всего желательно установить тип сплава. Распознавание типа сплава, как правило, не требует предварительного его измельчения и ведется на деталях бесстружковый методом анализа. Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др., медные сплавы — олово, цинк, свинец, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.384]

    При выполнении полного спектрального анализа следует рекомендовать вести расшифровку спектрограммы по аналитическим спектральным линиям при определенном порядке расшифровки элементов (см. табл. 4). Целесообразнее вначале обратить внимание на наиболее распространенные в природе элементы кремний, алюминий, железо, кальций, магний, натрий, калий. Тогда вероятнее всего будут вначале определяться основные элементы проб, а потом примеси. Далее, в табл. 4, в некоторой степени учтено совместное присутствие элементов в природных образованиях. Так, например, гафний всегда надо расшифровывать после п,ирко-ния, кадмий — после цинка. Элементы медь, свинец, цинк, кадмий, серебро, сурьма, висмут, мышьяк, теллур— [c.10]

    Так, при определении одного и того же элемента (например, кобальт, цинк, железо) в крови, пищевых продуктах или сплавах и минералах способ разложения образцов определяется соотъетствешю органической или неорганической природой объекта. Разложение и перевод в раствор проб силикатов проводят в зависимости от определяющего их состав соотношения MeO/SiOj. Если в составе силиката преобладают оксиды металлов, то пробу растворяют в кислотах, если — оксид кремния, то проводят сплавление или спекание. При определении в силикате содержания железа, титана, алюминия пробу сплавляют со щелочными плавнями при определении суммы щелочных металлов спекают с СаО и a Oj. [c.70]


    Руды и промпродукты медно-никель-кобальтового производства. Определение массовых долей меди, никеля, кобальта, железа методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой (ИАЦ РАО Норильский никель ) Руды, концентраты, промежуточные и отвальные продукты. Определение массовых долей кремния, алюминия, кальция, магния, железа, хрома, марганца, титана, ванадия, калия и натрия методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой (ИАЦ РАО Норильский никель ) Минеральное сырье, руды, продукты их переработки, содержащие свинец, цинк, кадмий и мышьяк. Определение массовых долей свинца, цинка, кадмия и мышьяка методами атомной спектрометрии (ИАЦ РАО Норильский никель ) Никель. Методы химико-атомноэмиссионного спектрального анализа [c.823]

    И одновалентной меди. Шестивалентный молибден и двух валентная медь в отдельности восстанавливаются в сереб ряном редукторе до пятивалентного молибдена и однова лентной меди при последующем добавлении раствора молиб дата аммония развивается интенсивная синяя окраска Алюминий, трехвалентный хром и свинец не экстраги руются в форме карбаматов при рекомендованных уело ВИЯХ. Марганец экстрагируется не полностью. Трехвалент ное железо, пятивалентный ванадий, никель, кобальт, шестивалентный молибден, двухвалентная медь, цинк и четырехвалентное олово экстрагируются, но полнота экстракции различна для разных металлов и, вероятно, ни в одном случае не протекает количественно. Однако остаточные количества металлов дают небольшую или вообще не дают ошибки при определении кремния. Из обычно встречающихся элементов только ванадий может мешать определению. Ванадий, остающийся в растворе после экстракции, обычно дает поглощение, эквивалентное поглощению [c.47]

    Если не были приняты специальные меры, то при обычном ходе анализа горных пород часть олова улетучится, а часть выпадет в осадок вследствие гидролиза и выделится вместе с кремнекислотой. Продукты гидролиза солей олова, присоединяясь к осадку кремнекислоты, могут быть причиной ошибки в определении кремния, так как они изменяют свой состав, когда нечистая кремнекислота обрабатывается фтористоводородной и серной кислотами и остаток примесей прокаливается. В обычном ходе анализа горных пород та часть олова, которая не улетучится при выпаривании с соляной кислотой, попадет в осадок от аммиака и будет принята за алюминий, потому что большинство реактивов, применяемых для восстановления железа, не восстанавливает олова. Цинк, являюш ийся исключением, обычно восстанавливает все олово в редукторе Джонса до металла. Таким образом и при использовании цинка для восстановления железа олово не оказывает влияния на титрование железа, если только оно не перейдет в раствор до конца титрования. [c.332]

    Семь элементов-металлов — железо, кобальт, марганец, натрий, калий, кальций, магний — играют решающую роль в основных процессах жизнедеятельности и относятся к числу биогенных элементов. Перечень этот сократить нельзя, но можно расширить. По крайней мере, еще десяток элементов имеют существенное значение для нормального существования организмов медь, цинк, молибден, никель, ванадий, хлор, бром, иод. Некоторые из легчайших атомов — литий, бериллий, бор — присутствуют в небольших количествах в большинстве растений и животных. Определенным типам клеток обязательно нужен кремний и, вероятно, в некоторых случаях еще и фтор. Подавляющее большинство перечисленных элементов составляют члены 2—3-го периода таблицы Д. И. Менделеева. [c.175]

    При отборе проб воды для определения микроэлементов применяют посуду из бесцветного химически стойкого стекла, содержащего в большинстве случаев минимальное количество микропримесей (табл. 1.1). Однако стекло, из которого изготовлена обычная стеклянная химическая посуда, разрушается сточной водой (особенно при ее хранении), в результате чего в воду переходят Са +, Mg2+, К+, На+, 5 , С1 , Zn +, 5Юз и др. Для хранения сточной воды пользуются посудой из боросиликатного стекла (пирекс) или из полиэтилена. Широко используют посуду из полимерных органических материалов, которые почти не содержат микропримесей, за исключением А12О3, Т10г и других, входящих в состав катализаторов для синтеза полимеров в некоторых марках полиэтилена содержится цинк и натрий, так как стеараты цинка и натрия применяют в качестве разделительных составов. Практика показывает, что хранение проб в стеклянных бутылях не сопряжено с выщелачиванием микрокомпонентов 1ИЗ стекла и протеканием адсорбционных процессов [11]. Однако необходимо иметь в виду, что эти процессы все же имеют место. Соединения некоторых элементов выщелачиваются из стекла в заметных количествах. Так, кислыми и нейтральными растворами из стекла извлекаются оксиды кремния и натрия [16—18], выщелачиваются бор [19], железо, алюминий [20, [c.20]

    Метод экстракции. Он заключается в экстрагировании искомых элементов из основной массы раствора каким-либо экстрагенто.м. Затем экстрагент удаляется, а определяемые элементы обрабатывают соответствующими фонами и полярографируют в малом объеме (0,1—1,0 мл). Таким способом Поль и Бонзельс [25] определили примеси свинца, кадмия, железа, индия, меди, никеля, таллия, висмута и цинка при содержании 1.10 % каждого в кремнии ос. ч. с предварительной экстракцией диизопропиловым эфиром некоторых из перечисленных элементов. Определение 10 % свинца и 10 % цинка в хлористом натрии х. ч. [26] проводили путем экстракции их дитизоном в растворе с pH 9 с последующим разрушением последнего и полярографированием на фоне винной кислоты и ацетата аммония. При определении следов цинка в сульфате никеля [27] цинк экстрагировали из раство-вора дитизоном при добавлении цианистого калия (для блокирования никеля) и ацетата натрия (pH 5—5,5) и затем после разложения экстрагента полярографировали на фоне 0,1 М раствора уксусной кислоты и 0,025 М раствора роданида калия. При содержании 0,001% цинка ошибка определения составляла 6%. [c.85]

    Как было сказано выше, для колориметрического определения нона X последний переводят в окрашенное соединение, обычно комплексного характера. Так, например, железо, кобальт, молибден и вольфрам определяют часто в виде роданидных комплексов. Титан и ванадий определяют в форме комплексов с перекисью водорода. Медь, цинк и многие другие цветные металлы определяют в виде комплексов с дифенилтиокарбазоном фосфор, кремний — в виде комплексных гетераполикнслот. [c.12]

    В золе исследуемых фракций нефтей Таджикской депрессии нолуколичественным спектральным анализом были обнаружены следующие микроэлементы натрий, медь, серебро, берилий, магний, кальций, стронций, барий, цинк, алюминий, лантан, кремний, олово, свинец, титан, цирконий, сурьма, висмут, ванадий, хром, молибден, марганец, железо, никель. Чтобы проследить распределение по фракциям тех микроэлементов (ванадий, хром, марганец, железо, никель, медь, свинец, молибден), которые были количественно определены в самой нефти, подобное определение их производилось и во всех изученных фракциях. Как видно из таблицы, микроэлементы распределены по фракциям неравномерно. Основная масса, например ванадия, сконцентрирована в асфальтенах и спирто-бензольных смолах, а никеля — в асфальтенах и петролейноэфирных маслах (исключение составляют фракции нефти Алмасы). Соответствук>щие данные показаны па рис. 5, 6. Что касается других микроэлементов (хром, марганец, медь, свинец, молибден), то в их распределении также наблюдается определенная закономерность. [c.127]

    Установлено, что азотная и серная кислоты при концентрации до 25 /о (по объему), а также литий, натрий, калий, кальций, барий, стронций, медь, кадмий, свинец, хром, марганец, железо, серебро, титан, цирконий, фосфор, мышьяк, бор, алюминий, висмут, кобальт, никель, сурьма, торий и олово при концентрации по 1000 мкг/мл каждого определению не мешают. Несколько заниженные результаты получаются в присутствии магния и кремния (найдено соответственно 4,75 мкг/мл и 2,85 мкг/мл цинка вместо 5 мкг/мл). Значительный мешающий эффект был обнаружен первоначально со стороны галоидных кислот. Оптическая плотность при 2139 А 2,5 н. раствора соляной кислоты, содержащей цинк в концентрации 7,5 мкг/мл, равнялась 0,52 вместо 0,30 для водного раствора при той же концентрации цинка. С уменьшением концентрации кислоты оптическая плотность раствора приближалась к 0,30 (в растворе 0,1 н. соляной кислоты оптическая плотность равна 0,28). Объясняя полученный результат, авторы предположили наличие в области 2100—2200 А молекулярных абсорбционных полос соляной, бромистоводородной и йодистоводородной кислот, ранее не идентифицированных и в связи с этим рекомендовали определение цинка проводить в отсутствии галоидных кислот. С этим объяснением не согласился автор работы [8]. По его данным, галоидные кислоты при использовании горелки из нержавеющей стали определению цинка не мешают. В связи с этим он высказал предположение, что поглощение в области 2000—2200 А вызвано поступлением в пламя загрязнений. В последующих исследованиях это предположение подтвердилось [9] было показано, что при использовании латунной горелки ее поверхностный окисный слой разрушается соляной кислотой и вносится в пламя вместе с распылохм анализируемого раствора. Этим объясняется поглощение в пламени растворов галоидных кислот как при длине волны Zn 2139 А, так и при длинах волн 2024,. 2165, 2178 и 2182 А. При указанных длинах волн [81] расположены сильные абсорбционные линии меди. [c.149]

    Источником загрязнений в большинстве методов слуяшт дистиллированная вода, содержащая медь, цинк и другие элементы в количестве 10- %. Поэтому для определения следов элементов рекомендуется применение деионизированной воды. Другой источник загрязнений — сами реагенты, которые часто требуют очистки (см. гл. 4) . Обычные элементы (железо, кремний, магний, цинк и алюминий) доставляют много хлопот при определении следов элементов спектрофотометрическим и флуорометрическим методами. Чем реже встречается элемент, тем меньше опасность загрязнений этим элементом (платиновые металлы, селен, теллур, редкоземельные элементы и т. д.). Поэтому острота проблем загрязнения зависит от конкретно определяемого элемента. [c.137]


Смотреть страницы где упоминается термин Кремний, определение в железе цинке: [c.690]    [c.85]    [c.583]   
Химико-технические методы исследования (0) -- [ c.586 ]




ПОИСК





Смотрите так же термины и статьи:

Кремний определение

Кремний цинком

Цинк определение железа



© 2025 chem21.info Реклама на сайте