Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кремний сера, углерод и водород, определение

    Определение количественного содержания элементов (углерод, водород, азот, галогены, фосфор, кремний, сера и др.)  [c.33]

    Одновременное определение углерода, водорода, кремния и серы в кремнийорганических соединениях, не содержащих [c.271]

    Несмотря на все усовершенствования калориметрической аппаратуры и методики работы, данные по тенлотам сгорания органических соединений, содержащих кроме углерода, водорода и кислорода еще другие элементы (азот, серу, галогены, кремний, металлы) значительно меиее точны, чем углеводородов и их кислородсодержащих производных. Для некоторых целей, нанример для определения теплот изомеризации, и точность данных но тенлотам сгорания углеводородов не представляется достаточно удовлетворительной. Поэтому были разработаны другие способы определения теплот образования органических соединений. Так, теплоты образования ряда олефинов были получены с использованием закона Гесса из теплот их гидрирования и теплот образования, получающихся при гидрировании ненасыщенных углеводородов (Прозен И Россини, 1946 г.). Такой же обходный путь стал применяться и для определе  [c.112]


    В последние годы интенсивное развитие элементоорганической химии вызвало необходимость определять углерод и водород в присутствии таких элементов, как бор, фтор, кремний, мышьяк, фосфор и многие металлы, а также определять и сами гетероэлементы в органической молекуле. В руководствах по элементному анализу наряду с методами определения углерода, водорода, азота и кислорода обычно описывают способы определения галогенов, серы и других неметаллов, а также металлов. Все эти методы, как правило, основаны на предварительном разложении образца и определении соответствующего элемента уже в продуктах минерализации. [c.56]

    ОПРЕДЕЛЕНИЕ УГЛЕРОДА, ВОДОРОДА КРЕМНИЯ И СЕРЫ [c.65]

    Для определения газообразующих примесей в арсениде галлия рекомендованы метод вакуум-плавления для определения кислорода и водорода [347], а также масс-спектрометрический метод с применением масс-спектрографа с искровым ионным источником 178]. В последнем методе [78] определяют углерод, азот, кислород, а также литий, магний, серу и кремний. [c.198]

    Углерод в кремнии определяют высокотемпературным окислением образца серой, кислородом или кислородсодержащими соединения.ми с последующим из.мерение.м количества образовавшихся ЗОг или СОг [8—11]. Анализ кремния на содержание азота основан на восстановлении примеси до аммиака или элементного азота [12] для определения водорода и кислорода используют также восстановительное плавление с последующим измерением количества или изотопного состава выделяющихся газов [13—17]. [c.153]

    Элементы, постоянно входящие в состав органов и тканей животных и человека и и.меющие вполне определенное биологическое значение, называют биоэлементами . К ним относятся кислород, водород, углерод, азот, кальций, сера, фосфор, кремний, калий, магний, алюминий, железо, натрий, хлор. Некоторые из них (кислород, водород, углерод, азот, сера, фосфор) являются элементарной составной частью белков, жиров, углеводов, так называемых питательных веществ. [c.416]

    В книге детально описаны основные методы микроэлемен-тарного и функционального анализа органических соединений, приведены методы определения углерода, водорода, азота, серы, галогенов, кремния, фосфора, германия, активного водорода, карбонильной группы, аминного азота, азота нитропарафинов, алкоксильной группы и воды. Описан способ взвешивания даны рекомендации по организации лабораторий микроанализа органических соединений. [c.688]


    Методика определения. Одновременное определение углерода, водорода, кремния и серы может быть проведено в аппаратуре, изображенной на рис. 60 (стр. 269). Аппарат с металлическим серебром в этом случае нагревают электропечью длиной 8—10 см до 700—750 °С. Поверх навески в пробирку помещают асбест и сожжение проводят, как описано на стр. 263. В результате сожжения на поверхности серебра образуется Ag2S04. После проведения анализа взвешивают три аппарата и пробирку для разложения. [c.272]

    Зесовые методы одновременного определения углерода, водорода и других элементов в одной навеске (мг) разработаны на основе пиролитич. сожжения в пустой трубке (Коршун и сотр.). Для раздельного поглощения нек-рых мешающих соединений в трубку для сожжения помещают взвешиваемые контейнеры (пробирки, гильзы, лодочки). По весу несгорающего остатка определяют а) в виде окисла — бор, алюминий, кремний, фосфор, титан, железо, германий, цирконий, олово, сурьму, вольфрам, таллий, свинец и др. б) в виде металла — серебро, золото, палладий, платину, ртуть (последнюю — в виде амальгамы золота пли серебра). По изменению веса металлич. серебра определяют летучие элементы и окислы, реагирующие с серебром с образованием солей хлор, бром и иод — в виде галогенидов серебра, окислы серы — в виде сульфата серебра, окислы рения — в виде перрената серебра и т. д. Возможно определение четырех или пяти элементов из одной навески, напр, углерода, водорода, серы и фосфора или углерода, водорода, ртути, хлора и железа и т. д. Разработан метод определения углерода, водорода и фтора в одной навеске, применимый к анализу твердых, жидких и газообразных веществ. Вещество сжигают в контейнере, наполненном окисью магния углерод и водород определяют по весу СО2 и Н2О, а фтор, задержавшийся в виде фторида магния, определяют после разложения последнего перегретым водяным наром. Выделяющийся нри этом НГ поглощают водой и определяют фторид-ион методами неорганического анализа. [c.159]

    Сера. Взвешиваемая форма — SO4 [163]. При сожжении образуется смесь оксидов серы (IV) и серы (VI). На нагретом до 750—800°С серебре происходит количественное окисление смеси оксидов до SO3 с одновременным образованием сульфата серебра [179]. Оксиды серы поглощают в гальзе с металлическим серебром или посеребренной пемзой при указанной температуре. В присутствии в веществе щелочных или щелочноземельных металлов (большей частью это бывают сульфосоли) часть серы остается в контейнере в виде сульфата металла. Содержание серы рассчитывают из суммы привесов гильзы в форме SO4 и контейнера в форме MSO4. Гетероэлементы, не образующие термостойкие сульфаты, могут быть определены одновременно с углеродом, водородом и серой в виде их оксидов. В нашей практике это осуществлено для алюминия, бора, железа, иридия, кобальта, кремния, марганца, меди, молибдена, родия, ртути, рутения и фосфора. Возможности определения серы этими примерами не исчерпываются. Представление о термической устойчивости сульфатов некоторых металлов дают данные табл. 5. [c.105]

    В аналитической химии полимеров существует много задач, связанных с контролем производственных процессов и анализом химического состава полимерных материалов. Расширение ассортимента элементорганических полимеров, появление волокон специального назначения [1] потребовало разработки методов определения элементов, ранее не являвшихся характерными для высокомолекулярных соединений. Среди волокон специального назначения важное место заняли ионообменные, невоспламе-няющиеся, термостойкие, биологически активные и другие волокна [1—4], в состав которых, кроме обычных для органических соединений элементов, т. е. углерода, водорода, кислорода и азота, входят элементы с более высокими атомными номерами. К ним относятся кремний, фосфор, сера, хлор, титан, ванадий, хром, медь, олово, барий, ртуть, висмут и другие [3—7. Содержание этих элементов в волокнах и тканях может составлять от одного до нескольких десятков процентов. [c.4]

    Определение элементного состава вещества имеет большое значение при его идентификации. Присутствие гетероэлементов (т. е. элементов, в число которых не входят углерод, водород и кислород) говорит о сложности молекулы и о специфических свойствах соединений. Однако соединения, не содержащие в своем составе гетероэлементов, не всегда имеют простое строение. Отсутствие кислорода в веществе указывает на то, что мы имеем просто алифатический или ароматический углеводород. Наличие азота, особенно если известно, что он находится в виде аминогруппы, свидетельствует о растительном или животном происхождении образца. Некоторые вещества, имеющие минеральное происхождение (нефть, битум), содержат серу, в то время как галогены редко входят в состав веществ природного происхождения. Фосфор присутствует в некоторых гербицидах. Соединения, содержащие кремний, являются объектом изучения специальной области химии — химии кремнийорганических соединений. Все большее значение приобретают металлорганичес-кие соединения. [c.31]


    Много статей опубликовано по определению из одной навески углерода, водорода и различных элементов [137—144]. Детальное описание этих методов здесь опущено, так как они имеют практическое значение только в тех редких случаях, когда в распоряжении аналитика имеется не более нескольких миллиграммов вещества. По точности и надежности эти методы уступают методам, специально разработанным для определения конкретных 1етероэлементов в отдельных образцах. Здесь приводится только список литературы, определение углерода, водорода и серы [145—148] углерода, водорода и галогенов [149—151] углерода, водорода и бора [152] углерода, водорода и ртути [153, 154] углерода, водорода и алюминия [155] углерода, водорода и германия [156] углерода, водорода, кремния и германия [157] углерода, водорода и таллия [158] углерода, водорода и металлов [159] углерода, азота и серы [160] углерода, водорода, азота и кислорода [161] углерода, водорода, кислорода и серы [162] углерода, водорода, иода и серы [163] углерода, водорода, серы и фосфора [164] углерода, водорода, азота и кислорода [165] углерода, водорода, азота, серы и галогенов [166]. [c.316]

    Сущность этих методов разделения состоит в том, что для эффективного разделения используют большую летучесть одного из компонентов системы — определяемого либо мешающего. Например, малые количества германия в различных материалах определяют после предварительной его дистилляции из солянокислой среды в виде СеС14. Для отделения следов кремния его выделяют в форме летучего 31р4 из сильнокислой среды в присутствии НР. Мышьяк и серу часто определяют в ряде материалов после их предварительного отделения в виде соответ-ствующил водородных соединений — НгЗ и АзНз. Содержание в металлах таких элементов, как углерод, сера, водород, можно найти путем прокаливания раздробленной пробы в атмосфере кислорода, в которой они превращаются соответственно в СОг, 50г и НгО. Определение воды в различных твердых образцах часто сводится к их нагреванию при температуре выше 100 °С, после чего содержание воды находят по разнице в массе пробы до и после нагревания. Используют Также методы непосредственного ее определения после удаления воды в виде водяного пара. [c.401]

    Рассмотрение биогенных элементов удобнее проводить в периодической последовательности (т. е. по периодам), что позволяет связать вопрос о выборе биогенных элементов, использованных природой, с положением каждого из них в периодической системе. Этим достигается более глубокое понимание специфических и индивидуальных свойств определенного химического элемента и связь их с критериями его биогенной характеристики. Лучше всего это выявляется при рассмотрении изменений, происходящих с атомами при увеличении заряда ядра и сохранении неизменным числа электронных уровней. Тогда становится объяснимым различие биогенных ролей членов 2-го и 3-го периодов. Вниманию в таком случае предстает полный набор элементов, приобретающих стабильные электронные конфигурации после присоединения дополнительно от одного до четырех электроиов или после передачи другим атомам от одного до трех. В первом случае это водород и хлор (1 электрон) кислород и сера (2 электрона) азот и фосфор (3 электрона) и, наконец, углерод (4 электрона). Кремний участвует только в образовании особо устойчивых структур. Фтор необходим для деятельности биомолекуляр-ных структур в меньшей степени. Дополпяют упомянутый выше набор элементы, приобретающие повышенную стабильность, отдавая один, два или три электрона Ы+, Ма+, К+, М +, Ве + и, наконец, бор (Вз+). Что касается особой роли железа в состояниях Ре + и Ре + (т. е. при потере обоих внешних или соответственно внешних и шестого электрона с За-орбитали), то такие ионы [c.175]

    Наши терм-индексы были разработаны с учетом высказанных требований. При более внимательном рассмотрении интуитивная система групп веществ , созданная химиками, не представляет единой картины. Гетероатомы , появляющиеся в органических соединениях (все элементы, кроме углерода и водорода), мысленно распределяются на две группы и различно обрабатываются. В случае тривиальных гетероатомов , т. е. азота, кислорода, серы, галогенов, тип связи с углеродом обычно устанавливается по числу гетеросвязей, которые относятся к рассматриваемому углеродному атому. Так, например, рассматривают определенные карбоновые кислоты и их производные, а не кислородные соединения, азотные соединения и т. д. В случае характерных гетероатомов , таких, как мышьяк, кремний, напротив, обычно рассматривают вид гетероатомов, а не степень гетероориентации (мышьякорганические, кремнийорга-нические соединения). Эти два различных способа рассмотрения используются полностью в наших терм-индексах. Наконец, в случае характерных гетероатомов проводится еще объединение обоих принципов. Так, например, кремнийорганические соединения, с одной стороны, могут запрашиваться как тип соединений, образованных углеродом и кремнием, а с другой стороны, в них же постоянно измеряют степень гетероориентации углеродных атомов. [c.373]

    Метод основан на пиролитическом разложении полимера в токе кислорода с использованием для каталитического наполнения трубки сжигания оксида кобальта (II) и (III). При 800 °С происходит полное окисление углерода и водорода до диоксида углерода и воды, а азота — до диоксида азота. Наличие галогенов, серы и азота не мешает определению, так как продукты окисления серы и галогены полностью задерживаются слоем губчатого серебра, а оксиды азота улавливаются диоксидом марганца вне трубки. Диоксид углерода и воду определяют по привесу поглотительных аппаратов, наполненных аскаритом и ангндроном соответственно кремний (при анализе кремний-органических соединений) — по привесу оксида кремния, адсорбированного на кварце в стаканчике для разложения полимера. [c.151]

    По Ледебуру, окислы металла восстанавливают водородом при высокой температуре. Образовавшуюся при этом воду поглощают фосфорным ангидридом, взвешивают и пересчитывают на кислород. Метод Ледебура был усовершенствован Кейтманном и Обергоффером [15], Гартманом [16] и др. Было установлено, что при 950° С водород восстанавливает только окислы железа, при 1100—1150° С — также окислы марганца. Вейнберг [17] считает, что, добавляя плавень, можно при 1200° С восстановить водородом также двуокись кремния и окись алюминия. Однако в результате дальнейших исследований [18] было установлено, что определение кислорода в сталях с большим содержанием кремния приводит к заниженным результатам. В этом случае содержащиеся в стали окислы железа частично восстанавливаются кремнием с образованием двуокиси кремния, которая не восстанавливается водородом. Было выяснено, что в углеродистых сталях окислы железа частично восстанавливаются углеродом, содержащимся в стали. При этом образуется окись и двуокись углерода. Были предложены способы количественного определения окислов углерода. Было исследовано также влияние относительно больших концентраций азота, фосфора и серы. При высоких температурах водород реагирует с этими элементами, образуя соответственно аммиак, фосфористый водород и сероводород, что искажает результаты определения кислорода. Таким образом, водородный метод определения кислорода может давать верные результаты лишь при анализе железных порошков с малым содержанием [c.32]

    Обратим внимание на одну замечательную особенность периодической системы элементов Менделеева (см. табл. 2). В современных таблицах аналоги располагаются в вертикальных столбцах, тогда как в системе Менделеева 1869—1906 гг. все легкие элементы сдвинуты относительно друг друга и по отношению к тяжелым аналогам. Сдвиг элементов нечетных рядов вправо, а четных влево (см. табл. 2) привел к расположению их в шахматном порядке, к симметрии таблицы в диагональных направлениях и к разделению элементов на две подгруппы. Тот же прием привел к зигзагообразному расположению аналогов первых трех рядов. В табл. 2 водород смещен вправо от лития, литий — влево от натрия, а натрий — вправо от калия, рубидия и цезия. Бериллий сдвинут влево от магния, а магний — вправо по отношению к кальцию, стронцию, барию и радию. Бор, углерод, азот, кислород, фтор сдвинуты влево относительно алюминия, кремния, фосфора, серы, хлора и их тяжелых аналогов. И даже в группе инертных газов гелий смещен влево от неона, а неон — вправо от аргона и его тяжелых аналогов. Эти зигзагообразные смещения легких элементов сделаны Менделеевым не только по соображениям придания системе элементов стройной и гармоничной формы. Менделеев подчеркивал особый характер легких элементов. В восьмом издании Основ химии [2] на стр. 460 он пишет Элементы, обладающие наименьшими атомными весами, хотя имеют общие свойства групп, но при этом много особых, самостоятельных свойств. Так, фтор, как мы видели, отличается многим от других галоидов, литий — от щелочных металлов и т. д. Эти легчайшие элементы можно назвать типическими. Сюда должно относить сверх водорода (ряд первый) второй и третий ряды второй начинается с Не и третий с Ке и N3, а кончаются они Р и С1. . . Далее Менделеев, касаясь-смещения магния, пишет Так, например, Zn, С(1 и Hg. . . представляют ближайшие аналоги магния . Следовательно, основанием для смещений всех легких элементов из вертикальных столбцов служили вполне определенные отличия их химических и физических свойств от свойств тя-н елых аналогов. Эти зигзаги представляют в первоначальном виде идею о немонотонном изменении свойств в столбцах элементов-аналогов, развитую в дальнейшем Е. В. Бироном [17], который открыл в 1915 г. явление вторичной периодичности , подметив периодическое изменение теплот образования соединений элементами-аналогами главных групп. [c.25]

    Из летучих водородных соединений в табл. 8 приведены только простейшие. Наряду с ними образуются также высокомолекулярные летучие водородные соединения, которые получаются вследствие соединения более простых радикалов. Особенно сильно это проявляется в случав углерода, который, как известно, кроме СН4, образует большое число высших углеводородов. В определенной степени это характерно для бора и кремния. Для летучих соединений водорода с остальными элементами способность к образованию цепей, если она вообще проявляется, в основном ограничивается объединением двух радикалов. Для германия известно, кроме ОеН4 и GeaHg, соединение GesHg (тригерман), и для серы — соединения с водородом с цепями довольно большой длины (см. поли-сероводороды). [c.61]

    Для отдельных случаев предложены специальные методы анализа. Определение углерода во фторсодержащих соединениях производят сожжением навески в присутствии кварцевого песка вода и четырехфтористый кремний поглощаются соответственно серной кислотой и раствором фтористого калия, углекислота — раствором едкого кали [30]. Стремление упростить методы определения водорода выразилось в применении для анализа углеводородов [14, 15] лампового метода. Вода, образующаяся при сожжении нескольких граммов углеводорода, улавливается и взве-ппявается в поглотителе, наполненном пятиокисью фосфора. В связи с этим в стандартную лампу для определения серы внесены некоторые изменения. Определения по этому методу отличаются значительно большей точностью по сравнению с обычными (0,03% вместо 0,1—0,2%) и могут быть выполнены малообученным персоналом. [c.9]


Смотреть страницы где упоминается термин Кремний сера, углерод и водород, определение: [c.413]    [c.108]    [c.413]    [c.755]    [c.10]    [c.47]   
Руководство по анализу кремнийорганических соединений (1962) -- [ c.271 ]




ПОИСК





Смотрите так же термины и статьи:

Водород определение

Кремний определение

Сера, определение

Серии определение



© 2025 chem21.info Реклама на сайте