Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Графит электропроводность

    Благодаря своей электропроводности графит применяется для изготовления электродов. Из смеси графита с глиной делают огнеупорные тигли для плавления металлов. Смешанный с маслом графит служит прекрасным смазочным средством, так как чешуйки его, заполняя неровности материала, создают гладкую поверхность, облегчающую скольжение. Графит применяют также в качестве замедлителя нейтронов в ядерных реакторах. [c.435]


    Электропроводность графитовой пленки и скорость покрытия ее металлом зависят от степени чистоты графита, размера и формы частиц. Графит должен содержать не менее 92% углерода. От примесей силикатов и окислов железа в графите освобождаются путем последовательной обработки в серной и соляной кислотах и едком натре. Для получения качественного покрытия частицы графита не должны быть чрезмерно малыми, так как в противном случае трудно получить сплошную проводящую пленку. Проводящий слой можно получить путем химического восстановления металлов из водных растворов. В настоящее время разработаны способы получения пленок серебра, меди, золота, никеля, кобальта и некоторых других металлов. Наиболее широко применяют пленки серебра, реже меди. Обычно для серебрения берут аммиачный раствор окиси серебра, а в качестве восстановителя формальдегид, пирогаллол, глюкозу, сегнетову соль. [c.215]

    В качестве примера смешанной формы связей (металлической и ковалентной) можно указать на графит атом углерода в реш( тке графита связан с тремя соседними ковалентной связью, а четвертый электрон каждого атома является общим для всего атомного слоя, обусловливая электропроводность графита. Смешанные связи встречаются также в мышьяке, висмуте, селене и других простых веществах. Чисто металлическая связь характерна только для некоторых металлических монокристаллов. [c.11]

    Пример № 4. В лабораторных условиях был синтезирован полипропилен, содержащий в качестве наполнителя графит. Электропроводность этого композиционного материала при 20—30%-ном содержании графита оказалась значительно выше, чем у материала, полученного смешением компонентов в экструдере (традиционная технология). Электропроводность изучали на прессованных образцах. Уменьшение содержания графита при равной проводимости представляет большой интерес, так как при этом снижается охрупчивание полипропилена. [c.89]

    К числу проводников первого рода относятся все металлы, их сплавы, уголь, графит. Электропроводность этих материалов обусловлена электронами (электронная проводимость). Прохождение электрического тока не влечет за собой химического превращения материала проводников первого рода. При повышении температуры электропроводность металлов уменьшается (возрастает сопротивление). У угля и графита наблюдается обратная картина. [c.141]

    В [В-4] показано изменение свойств композиций натуральный графит Тайгинского месторождения—каменноугольный пек от состава. С увеличением связующего плотность и электропроводность снижаются по закону аддитивности. [c.248]


    Физические свойства определяются видом щелочного металла. Электропроводность МСС выше, чем у применяемого для этого синтеза графита, по оси а в 10 раз, по оси с в 200 раз. Температурный коэффициент электросопротивления положительный, т. е. носит металлический характер. Аналогичные изменения наблюдаются у МСС щелочной металл (Аг)-графит. [c.273]

    Из табл. 4-4 видно, что чем больше объем мезо- и макропор у сажи, тем ниже объемная ее концентрация, соответствующая постоянной вязкости расплава. Повышенная пористость сажи увеличивает ее объем в связующем при одинаковых весовых соотношениях этих компонентов. Предельная объемная концентрация сажи, которая обеспечивает получение максимальной электропроводности, находится в интервале 0,2-0,3. При дальнейшем увеличении количества сажи электропроводность не изменяется. Это соответствует представлениям о смесях кокс-сажа-связую-щие и кокс-графит-связующее, где указанные объемные соотношения между порошковыми компонентами обеспечивают оптимальные свойства структур двойного каркаса [В-4]. [c.197]

    Таким образом, графит является молекулярным кристаллом в одном направлении и ковалентным — в другом. К кристаллам со смешанными связями относятся многочисленные силикатные материалы, в которых наряду с ковалентными действуют ионные и межмолекуляр-ные силы. Немалое значение имеют ковалентные связи в металлических кристаллах, образуемых -элементами. Высокие твердость, плотность и температуры плавления, а также заниженную (по числу валентных электронов) электропроводность этих металлов объясняют участием (I-электронов в образовании ковалентных связей между частицами в узлах кристаллических решеток. [c.81]

    Нефтяной кокс — высококачественный углеродистый материал— и получаемый из него искусственный графит имеют очень широкую область применения благодаря редкому сочетанию физико-химических свойств. К этим свойствам относятся высокая электропроводность, термическая и химическая стойкость в агрессивных средах, сравнительно низкий коэффициент линейного расширения, легкая механическая обрабатываемость, удовлетворительные прочность и упругопластичные свойства. [c.66]

    В соответствии с различием в кристаллической структуре (в особенности в типах связи) полиморфные модификации различаются (иногда очень резко) по своим физическим свойствам — плотности, твердости и пластичности, электропроводности и пр. Так, графит черного цвета, непрозрачен, проводит электрический ток алмаз — прозрачен, электрический ток не проводит. Графит — мягкое вещество, а алмаз — самое твердое из всех известных веществ плотность графита 2,22 г/см , алмаза 3,51 г см . Полиморфные модификации могут заметно отличаться и по химической активности. [c.144]

    Для повышения электропроводности агломератной массы в нее вводят графит. Элементы, содержащие массу с малым количеством графита, обладают повышенной емкостью, но более высоким внутренним сопротивлением. Такие элементы не пригодны для разряда большим током. В производстве обычно применяют природный предварительно обогащенный графит, содержащий около 90% углерода. [c.31]

    В поверхность механически втирают с помощью мягких волосяных щеток мелкодисперсные порошки графита, меди и ее сплавов. Графит обладает высокой адгезионной способностью и хорошо прилипает к ней. Для увеличения электропроводности графита к нему добавляют иногда металлические порошки или обрабатывают графит раствором азотнокислого серебра с последующим восстановлением нитрата серебра до металлического. [c.443]

    Объясните факт возрастания электропроводности некоторых модификаций неметаллов в ряду иод, серый селен, черный фосфор, графит и бор. [c.553]

    Бывают и промежуточные типы кристаллических решеток Например, графит носит в себе черты ковалентной, молекулярной и металлической решеток. Атомы С в графите связаны между собой системой sp -гибридных (т-связей, образуя единую плоскую систему сконденсированных бензольных колец (рис. 54). Поэтому в пределах одного такого плоского слоя имеет место ковалентная решетка. Поскольку все 2р-орбитали, ориентированные перпендикулярно плоскости слоя, образуют единую многоцентровую л-ор-биталь, то электроны могут относительно свободно перемещаться вдоль этой плоскости, чем и обусловлена довольно высокая электропроводность графита. В то же время параллельные слои связаны между собой нековалентными взаимодействиями, что типично для молекулярных кристаллов. [c.119]

    Железо-никелевый аккумулятор. В данном аккумуляторе роль губчатого свинца выполняет спрессованный порошок железа со специальными добавками, а роль диоксида свинца — гидроксид никеля (III) (или гидратированный оксид никеля N 203-НдО), к которому добавляют чистый графит для увеличения электропроводности. Электролитом является раствор КОН ( 23%-ный). [c.186]


    Печь должна иметь изотермическую зону, в которой и следует производить атомизацию, в противном случае проба конденсируется на более холодных стенках, что приводит к памяти атомизатора и к искажению результатов анализа. Печь выполняется из материала, обладающего высокой тепло- и электропроводностью, хорошими механическими качествами, коррозионной устойчивостью во всем температурном интервале, температурой плавления значительно выше 3000° С и ничтожным содержанием примесей (менее 10" % ) Наилучшим материалом, удовлетворяющим этим требованиям, является графит. [c.163]

    Графит хорошо проводит тепло (в 3 раза лучше ртути) и обладает близкой к металлам электропроводностью (0,1 от электропроводности ртути). И электро- и теплопроводность больше параллельно слоям, чем перпендикулярно им. Максимум теплопроводности графита наблюдается около 0°С, а электропроводности — около 600 °С. Механическая прочность графита при переходе от обычных температур к 2500 °С возрастает почти вдвое. Его сжимаемость примерно в 20 раз больше сжимаемости алмаза. Заметное окисление графита при нагревании на воздухе наступает лишь выше 700 С. [c.502]

    Графит встречается в природе в виде минерала, но его можно и синтезировать. Он довольно мягкий и имеет серовато-черную окраску с маслянистым блеском. Графит хорошо проводит электрический ток. Кроме того, он обладает превосходными смазочными свойствами и поэтому используется как смазочное средство в движущихся частях машин. Обожженная смесь графита с глиной используется для изготовления карандашных грифелей. Хорошая электропроводность графита позволяет использовать его для изготовления электродов. [c.251]

    В кристаллах со слоистой структурой очень сильно различие физических свойств вдоль и поперек главной оси симметрии. Так, в графите электропроводность вдоль оси с в 10 раз больше, чем в поперечных направлениях. Вследствие слоистости структуры кристаллы графита легко деформируются путед смещения вдоль плоскостей (0001), что позволяет применять графит в качестве смазки. Графитовые чешуйки, соскальзывающие вдоль плоскостей (0001), оставляют след на бумаге, когда пишут графитовым карандашом. [c.164]

    В методах электрохимического анализа сохраняется обычный иринцин титриметрических определений (см. выше), но момент окончания соответствующей реакции устанавливают либо путем измерения электропроводности раствора [кондуктометрический метод), либо путем измерения потенциала того или иного электрода, погруженного в исследуемый раствор потенциометрический метод), и нр. К электрохимическим методам относится и так назы-вгемый полярографический метод. В этом методе о количестве огределяемого элемента (иона) в исследуемом растворе судят по вольт-амнерной кривой (или нолярограмме ), получаемой при электролизе исследуемого раствора в особом приборе — поляро-графе. [c.13]

    Натуральные графиты содержат примесь минералов, не полностью удаленных из них при обогащении руд. Этими минералами являются силикаты и кальцш. Из силикатов наиболее постоянной примесью является слюда. Из примесей, вносимых при обогащении графитовых руд, следует упомянуть масло, металлическое и окисленное железо, попадающее в графит во время размола в мельницах. Эти примеси не оказывают заметного влияния на такие свойства графитовых материалов, как электропроводность и способность пластифицировать электродную массу, если их количество не превышает 10 мас.%. Однако они могут оказать отрицательное воздействие при производстве антифрикционных изделий. [c.8]

    Кокс сферолитовой структуры состоит из отдельных мелких частиц, кристаллиты которых не имеют определенной ориентации. Структура коксов плотная с однородными з частками, небольшим числом округжх пор и точечным узором. Коксы такой структуры хуже графитируются, графит получается жестким в отличие от жирного, мягкого графита коксов волокнистой структуры, менее тепло- и электропроводный. [c.12]

    Теоретический анализ такой концепции в приближении модели уложенных сфер приводит к количественным выводам о том, что минимально-необходимое содержание добавки в составе AM прямо пропорционально ее эффективной плотности С этой точки зрения терморасишренный графит (термографенит -ТГ) имеет несомненное преимущество перед любыми другими видами электропроводных добавок, поскольку может иметь очень малую эффективную плотность при сохранении высокой электропроводности. [c.55]

    Графит должен быть достаточно чистым и иметь высокую электропроводность. При приготовлении агломерата частички графита должны равномерно распределяться между зернами двуокиси марганца. Поэтому графит следует измельчать тоньше, чем пиролюзит. В качестве добавки, повышающей электропроводность, можно применять также графит, полученный нагреванием кокса при 2250 °С. Такой графит содержит небольшое количество золы и обладает повышенной электропроводностью. Однако ввиду высокой стоимо-мости искусственного графита он имеет ограниченное применение. [c.31]

    Другой пример молекулы с делокализованными электронами — кристалл графита. Его атомы углерода также могут быть рассмотрены как находящиеся в ар--гибридизацпи и располагающиеся в одной плоскости. Каждый из атомов углерода связан с тремя ближайшими соседями а-связя.ми, а оставшиеся р-АО располагаются перпендикулярно плоскости и образуют гг-систему с делокализацией электронов по всей плоскости. По сравнению с бутадиеном графит уже можно рассматривать не как делокализацию э.лектронов в одном направлении (по цепочке), а как делокализацию сразу в плоскости. В силу большого числа взаимодействующих р-орбита лей, количество образуемых ими МО также велико. Энергетическое различие между ближайшими из таких МО невелико. Это объясняет непрозрачность и хорошую электропроводность графита. Среди неорганических соединений весьма часто встречаются плоские структуры, в которых также существуют тг-делокализованные связи. К ним, например, относятся трифторид бора, карбонат-ион, нитрат-ион, озон, триоксид серы и др.  [c.148]

    Веществ, обладающих атомными решетками, сравнительно мапо. К ним принадлежат алмаз, кремний и некоторые неорганические соединения. Эти вещества характеризуются высокой твердостью (алмаз — самое твердое естественное вещество), они тугоплавки и нерастворимы практически ни в каких растворителях. Такие их свойства обусловлены прочностью ковалентной связи. Если атомы в кристаллической решетке связаны только <т-связями, то вещество не проводит электрического тока и является изолятором (кварц). Если в атомной кристаллической решетке присутствуют делокализованные тг-связи, то вещество может иметь хорошую электропроводность (графит). Попытка сдвига одних участков кристаллической решетки относительно других приводит при достаточном усилии к ее разрушению, что связано с разрывом кова.пентных связей, обладающих направленностью. Количество ближайших частиц в кристаллической решетке, окружающих выбранную, назывгьется координационным числом. Координацрюн-ное число в атомных решетках определяется числом <т-связей центрального с окружающими его атомами и, в силу насыщаемости ковалентной связи, не достигает больших значений. Часто оно равно четырем. [c.160]

    Если на монокристалле графита укрепить электроды (проводники первого рода) перпендикулярно атомным слоям углерода, то под действием электрического поля электроны будут смещаться вдоль л-связей перекрывающихся негибридных орбиталей, что и обусловливает высокую электропроводность графита. Если же электроды укрепить параллельно слоям, то ток через графит не проходит. По методу молекулярных орбиталей проводимость графита вдоль плоскостей атомов можно объяснить образованием единой для всех атомов молекулярной лторбитали, простирающейся на всю плоскость. [c.180]

    Как и у алмаза, в графите каждый атом углерода образует друг с другом четыре связи. Однако эти связи неодинаковые. Три из них являются а-связямн, образованными в результате перекрывания р -гибридных орбиталей атомов углерода. Все они располагаются в одной плоскости под углом 120°, образуя непрерывную плоскую сетку, состоящую из правильных шестиугольников, в углах которых находятся атомы углерода. Четвертая я-связь образуется за счет перекрывания лепестков р-орбиталей выше и ниже плоскости, в которой расположены атомы углерода. п-Связь образует сплошное электронное облако по всему слою атомов углерода, как в случае металлической связи. Углеродные слои у графита связаны очень слабыми силами межмолекулярного пзаимодействия. Эти особенности строения графита и обусловливают такие его свойства, как электропроводность, слоистость и т. д. [c.241]

    Щелочные аккумуляторы. Из этой категории аккумуляторов наибольшим распространением пользуется железо-иикелевый. Роль губчатого свинца в данном случае играет спрессованный порошок железа со специальными добавками, а роль двуокиси свинца — гиЦроксид никеля (HI), к которому для повышения электропроводности добавляют чистый графит. Электролитом служит раствор КОН (обычно 23%-ный раствор). На поверхности раздела фаз Fe-pa TBop КОН в небольшом количестве образуется Ре(0Н)2. Это вещество и участвует в окислительно-восстановительных процессах, идущих в железо-никелевом аккумуляторе. [c.354]

    По химическому составу полупроводники весьма разнообразны. К ним относятся элементарные вещества, как, например, бор, графит, кремний, германий, мышьяк, сурьма, селен, а также многие оксиды ( uaO, ZnO), сульфиды (PbS), соединения с индием (InSb) и т. д. и многие соединения, состоящие более чем из двух элементов. Известны и некоторые органические соединения обладающие полупроводниковыми свойствами. Таким образом, к полупроводникам относится очень большое число веществ. Обусловлены полупроводниковые свойства характером химической связи (ковалентным, или ковалентным с некоторой долей ионности), типом кристаллической решетки, размерами атомов, расстоянием между ними, их взаиморасположением. Если химические связи вещества носят преимущественно металлический характер, то его полупроводниковые свойства исключаются. Зависимость полупроводниковых свойств от типа решетки и от характера связи ясно видна на примере аллотропных модификаций углерода. Так, алмаз — типичный диэлектрик, а графит — полупроводник с положительным температурным коэффициентом электропроводности. То же у олова белое олово — металл, а его аллотропное видоизменение серое олово — полупроводник. Известны примеры с модификациями фосфора и серы. [c.298]

    Графит — темно-серое, непрозрачное, со слабым металлическим блеском, мягкое, слабо проводящее электрический ток вещество. Он также тугоплавок, мало летуч и при обычной температуре химически инертен. Кристаллическая решетка графита, структура которой показана на рис. 45, существенно отличается от решетки алмаза. Кристаллы графита построены из параллельных друг другу плоскостей, в которых расположены атомы углерода по углам правильных шестиугольников. Расстояние между соседними атомами углерода (сторона каждого шестиугольника) 1,43 А, между соседними плоскостями 3,4 А. Каждая промежуточная плоскость несколько смещена по отношению к соседним плоскостям, как это видно на рисунке. Каждый атом углерода связан с тремя соседними в плоскостях атомами неполярными ковалентными связями. Четвертые валентные электроны каждого атома располагаются между плоскостями и ведут себя подобно электронам металла, чем и объясняется электропроводность графита в направлении плоскостей. Связь между атомами углерода, расположенными в соседних плоскостях, очень слабая (межмолекулярная, или ван-дер-ваальсова). В связи с этим кристаллы графита легко расслаиваются даже при малых нагрузках ка отдельные чешуйки. Этим [c.191]

    Аддукт состава СаК образуется экзотермически (8 ккал/моль) при контакте графита с избытком жидкого или парообразного калия. Он имеет вид бронзы и обладает гораздо более высокой электропроводностью, чем исходный графит. Внедрение атомов калия не искажает паркеты , но вызывает их смещение в точно одинаковые позиции (структура ААА...). Расстояние от одного из них до другого становится при этом равным 5,4 А, а каждый атом калия располагается между центрами двух шестиугольников, имея соседями двенадцать атомов углерода [ (КС) = 3,07А]. Схема координации в СаК показана на рис. Х-12. Аналогично калию ведут себя по отношению к графиту рубидий и цезий (расстояние между паркетами 5,6 для sRb и 5,95 А для a s), причем теплота внедрения по ряду К (87)—Rb (116) — s (159 кал/г графита) [c.504]

    Аддукт предельного состава СаВг образуется при взаимодействии графита с избытком жидкого брома или его паров (в последнем случае теплота образования около 8 ккал/моль). Устойчив он лишь при наличии такого избытка, тогда как в его отсутствие постепенно теряет почти весь бром. Электропроводность этого аддукта значительно выше, чем у исходного графита. Расстояние между плоскостями паркетов возрастает при его образовании до 7,05 А, причем промежуточные бромные слои образованы цепями из молекул Вгг (с ядерными расстояниями 2,13 и 2,24 А). По всей вероятности, рассматриваемый аддукт наиболее правильно описывается равновесием С,5-1-Вг2 j j + Brj (предлагалась также формула ggBr" ЗВГз). Значительно труднее брома внедряется в графит свободный хлор, тогда как иод вообще не внедряется. Вместе с тем I I ведет себя по отношению к графиту аналогично брому. [c.504]

    В отношении давления паров НР и электропроводности электролита оба состава практически равноценны. При работе на втором составе отпадает внешний обогрев электролизеров. Для изготовления корпуса ванны, диафрагм и катодов можно применить железо (Ст. 3). В этих условиях трудно подобрать материал для анодов, так как графит в данном случае не стоек, никель — растворим. Достаточно стойким оказался специальный сорт неграфи-тированных угольных электродов. [c.333]

    Ход заряда и разряда окисно-никелевого электрода зависит от соотношения скоростей отбора или подачи протонов к поверхности зерна и скорости их диффузии в глубь зерна. При заряде, если поверхность обогатится кислородом, а новые протоны не успеют подойти из глубины зерна, начинается разряд ОН" с выделением газообразного кислорода. Так как при заряде окислы, обогащенные кислородом, приобретают электропроводность и могут служить токоподводом, то процесс легче продвигается в глубь зерна. Заряд можно вести при высоких плотностях тока. При разряде, по мере обеднения поверхности зерна кислородом, если диффузия протрнов в глубь зерна не будет поспевать за их подачей из раствора, произойдет резкий скачок потенциала (он становится более отрицательным). Кроме того, при обеднении наружного слоя кислородом электропроводность его падает, и разряд может прекратиться из-за потери контакта между токоподводящими добавками (графит) и глубинными слоями зерен, еще богатыми кислородом. Поэтому при разряде допустимы плотности тока меньшие чем при заряде. Например, при увеличении плотности тока при заряде в 100 раз использование тока снижается в 2 раза. При разряде аналогичный эффект происходит в случае возрастания плотности тока только в 10 раз. Роль контакта с токоподводящими добавками очень велика, поэтому, если окисно-никелевые электроды предназначены для работы при больших плотностях тока, процент добавок необходимо повышать. [c.514]

    В применяемые на практике электроды из двуокиси марганца для улучшения электропроводности вводится графит. Графит способен адсорбировать значительное количество кислорода и таким образом реальный электрод состоит как бы из двух коротко замкнутых электродов двуокисно-марганцевого и кислородного. Поскольку графит проводит ток лучше, чем МпОг, то именно потенциал кислородного электрода должен явиться основной составляющей, определяющей потенциал электрода в целом. При применении активной двуокиси марганца ее потенциал оказывается более положительным, чем у кислородного электрода в значительном диапазоне pH электролита. Графит будет насыщаться кислородом за счет двуокиси марганца пока потенциал последней ие снизится и не наступит равновесие. При применении малоактивной руды потенциал ее может оказаться более отрицательным, чем у кислородного электрода. Будет происходить дополнительное окисление руды за счет кислорода. Последний процесс также, в некоторой степени, способствует восстановлению потенциала электродов из МпОг во время перерывов в работе. [c.555]

    В разработанном Кирком и Фрайем [9] сухом магниевом элементе в качестве положительного активного вещества использован метадинитробензол (ДНБ) СвН4 (N0. )2. С 2 ч. ДНБ смешайте 1 ч. электропроводной добавки (графит + сажа). На 100 ч. такой смеси добавьте 3 ч. ВаСг04. Агломератную массу изготовьте смешением 2 ч. полученной сухой смеси с 3 ч. электролита. [c.64]

    Слоистая структура графита обусловливает легкое расслаивание его на отдельные чешуйки (слабые силы Ван-дер-Ваальса между плоскостями), что определяет его смазочные свойства и применение в карандашах. Нелокализованные я-связи обусловливают большую электропроводность графита вдоль плоскостей и черный цвет. Благодаря малой химической активности, тугоплавкости и хорошей проводимости графит широко используется в качестве анодов в электролизных ваннах, в частности, при получении алюминия. Из него готовят огне-упорньш тигли. В графитовых лодочках осуш,ествляют зонную плавку германия. О применениях графита в вакуумной технике говорилось в гл. VI, 4. [c.290]

    Графит непрозрачен, серого цвета, с мeтaлличe к м блеском. Благодаря наличию подвижных электронов, он д 1В0льн0 хорошо проводит электрический ток и теплоту он скользок на ощупь, как смазочные масла, и представляет собой одн( из самых мягких из числа твердых веществ. Даже при слабом трении о бумагу графит расслаивается на тончайшие чешу 1ки, застревающие между волокнами бумаги и оставляющие на ней серый след, например при писании графитовым кара дашом. Отсюда произошло и название графита (в переводе с латинского пишущий ). Из-за мягкости графит в виде поро ика заменяет смазочные масла при высоких, й также слишком низких температурах, устилая своими скользкими чешуйками зазор между осью и втулкой. В этих случаях используют также подшипники со втулками из прессованного графита. Из-за электропроводности графит применяют в качестве материала для электродов, а из-за теплопроводности — в виде теплообменных труб в химической промышленности. [c.89]


Смотреть страницы где упоминается термин Графит электропроводность: [c.695]    [c.643]    [c.356]    [c.50]    [c.10]    [c.448]    [c.96]    [c.49]    [c.89]   
оборудование производств основного органического синтеза и синтетических каучуков (1965) -- [ c.24 ]

Как квантовая механика объясняет химическую связь (1973) -- [ c.263 ]




ПОИСК





Смотрите так же термины и статьи:

Графит

Графит графита

Графой

Графы



© 2024 chem21.info Реклама на сайте