Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы галогениды неорганические

    Химию фотографического процесса полезно разделить на неорганическую фотохимию галогенида серебра и органическую химию сенсибилизации, проявления и окрашивания. Попадая на микрокристалл галогенида серебра, содержащийся в нанесенной на пленку эмульсии, свет оставляет там слабое изображение, сформированное, по-видимому, всего лишь из нескольких атомов металлического серебра. Металлическое серебро играет роль катализатора восстановления всего зерна микрокристалла, происходящего под воздействием проявителя — легко окисляемого органического соединения. Типичный размер зерен галогенида серебра в фотографической пленке — один микрон, контроль за размером и формой зерен играет весьма важную роль. Хотя галогениды серебра чувствительны к свету лишь в синей области спектра, зерна можно активировать по отношению к более длинноволновому излучению с помощью сенсибилизирую-ыщх красителей. Молекулы сенсибилизатора наносятся на поверхность галогенида серебра в виде покрытия толщиной менее тысячной миллиметра. Цвет возникает в тот момент, когда окисленная форма проявителя реагирует с еще одним органическим соединением, давая краситель нужного тона. Комбинируя три первичных тона, можно получить 11 цветов. Создание обычного цветного [c.133]


    Применяемые при полимеризации олефинов комплексные катализаторы очень разнообразны по составу. В настоящее время известно несколько тысяч каталитических систем (гетерогенных, кол-лоидно-дисперсных, гомогенных, модифицированных), основными компонентами которых являются галогениды, оксигалогениды, алкоксиды, амиды, соли большинства неорганических и органических кислот, а- и другие металлоорганические соединения, окислы и различные типы аддиционных комплексных соединений, включающие переходные металлы iV—VHI групп в различных валентных состояниях. В комбинации с ними используются сокатализа-торы — алкильные или арильные металлоорганические соединения непереходных металлов I—IV групп и многие их производные — алкил- или арилгалогениды, гидриды, алкоксиды, амиды, силициды и т. п. Б процессе полимеризации определяющую роль играют продукты глубокого взаимодействия между ними. [c.12]

    В процессе с участием растворителя органическое основание может быть заменено неорганическим, например едким натром или окисью кальция [19]. В патенте [20] было показано, что реакция чувствительна к растворителю, температуре и источнику меди. Утверждается, что лучшие результаты получаются при проведении реакции фталонитрила в нитробензоле в присутствии безводного аммиака и комплекса аммиака с ацетатом меди. Заявлено, что преимущество этого процесса состоит в том, что он не дает хлорированного фталоцианина меди, который образуется при применении галогенидов меди, хотя того же можно, очевидно, достигнуть при проведении реакции хлорида меди в нитробензоле в мягких условиях в присутствии катализатора. В качестве катализаторов предпочтительны соединения молибдена, титана или железа, которые снижают время и температуру реакции от 10—12 ч при 220 °С до 10—20 мин при 170 °С [21.  [c.213]

    Интересный класс катализаторов лолимеризации составляют неорганические галогениды с сильными побочными валентностями. В качестве примера мож)но привести четыреххлористое олово — чрезвычайно сильно действующий катализатор полимеризации стирола. Однако при действии четыреххлористого олова образуются только низко-молекулярные полимеры. Возможно, что действие и этого катализатора основано на образовании промежуточного продукта присоединения катализатора к мономеру. При распаде этого продукта образуется активированная молекула мономера (стр. 58). [c.61]

    Изомеризация алканов — применение галогенидов алюминия как катализаторов, неорганических галоидных солей, кислорода и воды как промоторов, водорода, циклогексана, моно- и поли-ядерных ароматических соединений и изобутана как подавите- [c.3]


    Здесь следует рассмотреть два основных варианта реакции Фри-деля-Крафтса. Первый вариант — прямое алкилирование бензола (или гомологов) с применением олефинов или неорганических сложных эфиров (алкилгалоидов или сульфатов) и небольших количеств катализатора. Другой вариант заключается в ацилировании с образованием арилал-килкетонов (как промежуточных соединений) и восстановление их в ароматические углеводороды. Ацилирование производится хлорангидридами или ангидридами с добавлением стехиометрических количеств катализатора — галогенида металла, обычно безводного хлористого алюминия  [c.480]

    Если эти реакции идут быстро, то в реакцию обмена может вступать даже посторонний неорганический галогенид-анион (например, вносимый с катализатором). Эти предположения частично подтвердились экспериментами при использовании водного раствора гидроксида натрия, насыщенного хлоридом натрия, и ТЭБА в реакции присоединения дибромкарбена к циклогексену продукты реакции содержали 3% бромхлорнорка-рана (В), образовавшегося в реакции обмена. Обратный про- [c.350]

    Описан также катализатор [215], содержащий в качестве активного вещества Pt, Pd, Ir или Ge, галогены и галогениды металлов на термически стойком неорганическом носителе. Указанный катализатор обеспечивает изомеризацию многих углеводородов н-парафинов С4—С20 и слабо разветвленного строения нафтенов пятичленных и выше смесей парафинов и (или) их смесей с наф-тенами, выделяемых из прямогонных бензинов олефинов до С20 алкилароматических углеводородов (предпочтительней алкилбензолов Са). Содержание 1г и Ge в катализаторе должно отвечать соотношению атомных масс Ir/Pt (Pd) и Ge/Pt (Pd) соответственно 0,1—2 1 (лучше 0,25—1,5 1 и 0,3—10 1). В качестве пористого носителя с большой поверхностью и термической стойкостью применены неорганические окислы А1,. Сг, Zn, Mg, Al—Si, Ti и др. (лучше — этаокись алюминия насыпной массой 0,5—0,6 г/см , удельной поверхностью 175 м /г и удельным объемом пор 0,4 см /г). Рекомендуется Pt, Pd и Ir применять в виде металлов, а Ge — в виде окисла. [c.319]

    К кислотно-основному (ионному) катализу относятся реакции гидратации, дегидратации, аминирования, изомеризации, алкилирования и т. п. (см. табл. 8). Катализаторами для этих реакциГ служат твердые кислоты или основания, обладающие лишь ионной проводимостью. К кислотным катализаторам относятся малолетучие кислоты (Н3РО4, Н2504), нанесенные на пористые носители, кислые соли (фосфаты, сульфаты), а также твердые неорганические вещества, способные передавать анионы (алюмосиликаты, частично гидратированные оксиды А1, 51, У, галогениды металлов). К основным катализаторам относятся гидроксиды и оксиды щелочных и щелочноземельных металлов на носителях и без них, щелочные или щелочноземельные соли слабых кислот (карбонаты и т, п.). [c.226]

    Гидрогенизация ароматики в высококипящие углеводороды смесь окиси углерода и водорода в присутствии тех же катализаторов, содержащих добавки щелочей (едкий натр или гидрат окиси лития), при 270— 350°, под высоким давлением, превращается в низкокипящие жидкие углеводороды, которые в свою очередь под давлением и при температуре ниже 250° в присутствии безводных неорганических галогенидов, например хлористого алюминия, превращаются в высококипящие углеводороды [c.281]

    В качестве примера приведем метод введения радиогалогенов в молекулы органических галогенидов прямым обменом с неорганическими галогенидами алюминия, железа, сурьмы и т. д. и каталитическим обменом в присутствии этих же соединений, игракчцих роль катализаторов-нереносчи-ков [17, 18]  [c.417]

    Что касается галогенидов, то хлористый бор встречается очень редко, а в основном применяется трехфтористый бор, индивидуально и в виде молекулярных соединений с водой, неорганическими и органическими кислотами, эфирами. Высокая каталитическая активность ВРз обусловлена его склонностью к комплексообразованию с органическими соединениями, которые содержат ненасыщенные атомы углерода или же элементы, проявляющие свою высщую валентность. Молекулярные соединения BPj часто образуются в качестве промежуточных продуктов в реакциях, где фтористый бор используется как катализатор. Способность ВР, к комплексообразованию объясняется его малым молекулярным объемом при высокой полярности. По сравнению с другими галогенидами бора фтористый бор имеет наименьший молекулярный объем, на что указывает междуатомное расстояние связи В — X, которое для ВРд равно 1,30 10- см, для ВС1з — 1,74 Ю , ВВгд — 1,87 10 , для ВЬ — 2,08 10 см. [c.115]

    Кроме присоединения различных органических молекул, галогениды бора, его молекулярные соединения и галогениды алюминия катализируют присоединение по двойным и тройным связям галоидводородов [117, 118, 1484—1490] при температуре 10—20° С, сероводорода [119—121, 125, 1492, 1493) и некоторых других неорганических соединений (ЫА1Н4, 5104 и др.). Эти же катализаторы иногда находят применение в реакциях карбонилирования [248—252, 1597—1602]. [c.119]


    Перегруппировка аллильных эфиров может происходить самопроизвольно, но чаще она вызывается кислотными катализаторами, особенно в случае аллильных спиртов, перегруппировку которых часто называют оксотропией. Было найдено, ято алкилированные аллильные хлориды также медленно изомеризуются при повышенных температурах в полярных растворителях в присутствии катализаторов — неорганических галогенидов — или без них [171] в то же время более подвижные 1- и 3-фе-нилаллилхлориды взаимопревращаются со Скоростью, пропорциональной кислотности примененного кислотного катализатора [172]. В отличие от этого аналогичная перегруппировка алкилаллильных бромидов протекает самопроизвольно, особенно быстро при кипении, и катализируется следами перекисей, что указывает на [c.239]

    Органогалогениды [294], алкоголяты металлов I—III групп [295] и органические перекиси и гидроперекиси [296] наряду с упомянутыми ранее карбидами, ацетиленидами и фосфинами могут служить в качестве эффективных добавок к обычным циглеровским катализаторам. Эти добавки позволяют проводить полимеризацию в более мягких условиях и повышают молекулярный вес образующихся полиолефинов. К каталитическим системам, приготовленным на основе металлического алюминия и галогенида титана [297] и на основе олово- или свинецорганических соединений и галогенида титана [298], можно добавлять органические и неорганические перекиси, а также кислород. [c.113]

    Использование свободных металлов в качестве восстановительных агентов для получения соединений титана и циркония рекомендуют при приготовлении ряда каталитических систем, причем компоненты нагревают при повышенных температурах (найример, 200—300°) с целью получения активных продуктов, т. е. продуктов, способных, по всей вероятности, образовывать комплексы с олефинами и инициировать полимеризацию при обычной температуре. Так, галогениды или алкоголяты титана и циркония нагревают с металлическими натрием, алюминием и даже титаном [215] и получают катализаторы для полимеризации этилена. При нагревании металлического титана с хлористым алюминием также образуется эффективный катализатор. Добавление кислорода или органических и неорганических перекисей дает возможность получить активный катализатор из титана и галогенида алюминия в более мягких условиях [238]. Кроме этилена в присутствии каталитической системы, состоящей из галогенидов алюминия и титана, иолимеризуются также пропилен, бутадиен и изопрен [239]. [c.114]

    Чаще используется, однако, реакция неорганических галогенидов фосфора с углеводородами, обычно ненасыщенными, в присутствии трихлорида алюминия. Поскольку фосфорилхлорид образует комплексы с трихлоридом алюминия, последний не является эффективным, катализатором в реакциях- фосфорилхлорида С алкенами тиофосфорилхлорид. таких комплексов не дает, поэтому его катализируемые хлоридом алюминия реакции с алкена-ми и аренами протекают удовлетворител нЬ и приводят К Дихлор-гиофосфонатам (уравнения 79, 80). [c.78]

    Предложено много путей промышленного применения соединений Со(1П), самый важный — использование их в качестве катализаторов для разнообразных реакций. Алкилароматические соеди-. нения, например толуол или бензол, окисляются в жидкой фазе газообразным кислородом или воздухом до альдегидов или кпслот в присутствии ацетилацетоната Со (III). Скорость реакции периодически увеличивают путем прибавления к системе неорганического сорбента, AI2O3 или кизельгура это удваивает также и выход Ацетилацетонат кобальта (III) и галогениды алюмннийалкила катализируют полимеризацию бутадиена, давая полимеры с узким распределением молекулярных весов, если катализатор выдерживается в течение определенного времени до начала полимеризации ". Утверждают, что по крайней мере на 93°/о образуется цис-структура ". Ацетилацетонат Со(1И) особенно интересен как компонент растворимой каталитической системы для стереоспецифической полимеризации диенов (стр. 363). Эта же каталитическая композиция была исследована для сополимеризации бутадиена и изопрена в интервале температур от —20 до - -50°С. Вместо алюминиевых соединений как сокатализатор был использован также амилнатрий. Полимеризацию бутадиена проводили при 20° С и давлении 1,5 ат в растворе пентана в течение 20 ч .  [c.318]

    Из катализаторов укажем следующие А1С1з, действие которого усиливается при частичной гидратации вообще безводные неорганические галоидные соединения галогениды металлов комплексные соединения AI ls растворы хлоридов металлов в спиртах ВРз, иногда в гидратной форме или в виде соединений с эфирами, органическими кислотами или спиртами комплексные соединения металлогалогенидов с органическими веществами, как, [c.97]

    Неорганические галогениды. Особенно энергичным катализатором этой группы является Sn U, главным образом, по отношению к стиролу и вииилкар-базолу (а также индену. кумарону и т. п.). [c.171]

    В современных процессах получения хлорфторметанов реакцию проводят непрерывным способом при умеренных температуре (около 100° С) и давлении (10—30 ат). Органические продукты, побочно образующийся хлористый водород и следы фтористого водорода проходят через колонку для фракционирования, соединенную с автоклавом кислоты обычно удаляют, промывая водой. Этому процессу посвящено большое число сообщений Процесс был усовершенствован введением перегонки всех образующихся продуктов (органических и неорганических) что позволило выделять безводный хлористый водород. Реагенты должны быть сухими, в противном случае активность катализатора быстро снижается было предложено применять для этого тионилхлорид 75 Описано оборудование для проведения этого процесса в лабораторном масштабе . Было рекомендовано внести некоторые изменения в проведение этого процесса, но ни одно из них, по-видимому, не имело важного промышленного значения. Так, исходный четыреххлористый углерод предлагали заменить продуктом взаимодействия сероуглерода и хлора in situ или метиленхлорида и хлора в остальном процесс оставался прежним. Фторирование четыреххлористого углерода можно проводить в отсутствие галогенидов сурьмы как катализатора, но при более жестких условиях реакции (230—240° С и 71,4 ат) и с меньшим выходом Согласно патентным данным, смесь фтористого [c.99]

    Неорганические соединения свинца редко применяют для стабипизацип других полимеров. Свинцовые соли слабых кислот стабилизируют цвет полиолефинов низкого давления. Например, основной фосфит свинца связывает НС1, образующийся из галогенидов металлов (остатки катализатора) при высоких температурах [1120, 1876, 2713, 3104, 3190] синергическая смесь из хромата двухвалентного свинца и антиоксиданта 2246 — светостабилизатор полиолефинов [721, 2788[. [c.159]

    Гетерогенные катализаторы полимеризации этилена, пропилена и других а-олефинов предложено получать напылением тонких слоев переходных металлов на поверхность неорганических солей. Для этой цели используют обычно титан, ванадий, уран, тантал, никель [9, 859, 860]. Процесс полимеризации начинается только после обработки этих катализаторов триэтилалюминием или ли-тийалкилами. Галогениды кобальта, марганца, магния или железа, металлированные титаном, проявляют более высокую- активность, чем аналогичные катализаторы на основе ванадия или циркония. Среди этих катализаторов следует отметить комбинации пирофорный титан — А1(С2Н5)з титан, нанесенный на СеС1з- А1 (С2Н5) з Ti, Zr, Hf, Th, V, Та, Nb, Сг, Mo, W—MeR в насыщенных углеводородных растворителях и т. п. [861]. Полимеризация на этих катализаторах протекает при повышенных температурах и давлениях. Механизм инициирования не выяснен, но можно предположить, что активные центры в катализаторах, представляющих упоминавшиеся выше комбинации, образуются следующим образом  [c.227]

    Каталитическое действие других неорганических галогенидов, вероятно, также обусловлено образованием двойных соединений между катализатором и ненасыщенным соединением, подвергаю-цщмся полимеризации. [c.198]

    Ионная полимеризация. 1. Катионные цепи. Некоторые виниловые мономеры, как, например, изобутилен (СНз)2С=СНг, а-м тил-стирол СвНбС(СНз)=СН2, инден и виниловые эфиры СН2=СН—О—R, не полимеризуются по обычному свободнорадикальному механизму, а только под действием электрофильных катализаторов. К последним относятся некоторые неорганические галогениды, центральный атом которых имеет недостаток электронов (так называемые кислоты Льюиса), как, например, следующие, расположенные в порядке убывающей активности  [c.278]

    Таким образом, неорганические галогениды такого типа действуют в качестве настоящих катализаторов перегруппировки ( электрофильных катализаторов ). Сухой хлористый водород приводит к диалогичному ускорению реакции за счет образования комплексных ионов [С1НС1] (П. Д. Бартлетт, 1937 г.), тогда как P lj и Si U, не образующие комплексов с ионами хлора, не оказывают никакого влияния на перегруппировку. [c.456]


Смотреть страницы где упоминается термин Катализаторы галогениды неорганические: [c.239]    [c.40]    [c.127]    [c.167]    [c.186]    [c.11]    [c.393]    [c.533]    [c.106]    [c.7]    [c.51]    [c.104]    [c.122]    [c.24]    [c.311]    [c.58]    [c.193]    [c.201]    [c.239]    [c.177]    [c.201]   
Химия и технология искусственных смол (1949) -- [ c.171 ]




ПОИСК





Смотрите так же термины и статьи:

Галогениды неорганические



© 2025 chem21.info Реклама на сайте