Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Горные урана

    В качестве основной особенности, характеризующей сырье, следует указать на огромные масштабы его добычи и переработки. В настоящее время в мире ежегодно извлекается и перерабатывается 10" т, т. е. 100 млрд. т горных пород, а ведь в качестве сырья, подвергаемого химическому переделу, используются не только горные породы. Чтобы представить себе масштаб этого рода человеческой деятельности, достаточно простейшего расчета на каждого человека, включая младенцев и стариков, ежедневно приходится 100 кг извлеченных горных пород. Учитывая, что масштаб производств в последние десятилетия значительно возрос, а само производство как в нашей стране, так и за рубежом в целом развивалось по экстенсивной схеме, возникла серьезная проблема истощения естественных источников сырья. Как видно из цветного рисунка I, при сохранении нынешних темпов потребления нефть, газ, уран-235, легкие цветные металлы (исключая алюминий) могут быть исчерпаны к середине следующего столетия. [c.168]


    Мировые запасы урана оцениваются примерно в 2,5 млн. т, а в большинстве горных пород, содержащих уран, на каждый килограмм урана-238 приходится 320 е свинца-206. Рассчитать количество гелия, выделившееся за время существования Земли за счет распада урана-238, если содержание этого изотопа в природном уране составляет 99.3%, [c.450]

    Радиометрическая датировка может быть в ряде случаев проведена и по другим радиоактивным изотопам. Изучение продуктов радиоактивного распада является в настоящее время самым достоверным способом определения абсолютного возраста горных пород и минералов. Свинец, встречающийся в природе, может иметь разное происхождение. Конечным продуктом распада 11 является РЬ . Цепочка распада 11 приводит к стабильному изотопу РЬ ТЬ образует изотоп свинца РЬ . Очевидно, что с течением времени содержание урана или тория в данной породе уменьшается и соответственно возрастает содержание свинца. Определяя величины соотношений и РЬ , и РЬ или ТЬ РЬ , можно оценить возраст породы, содержащей уран. [c.73]

    Радиоактивные вещества естественного (природного) происхождения в гидросфере. Такие радиоактивные элементы, как уран и торий, были известны задолго до открытия радиоактивности, они широко распространены в природе, содержатся в рудах,, горных породах, почвах, воде рек и морей, в живых организмах. Периоды полураспада природных изотопов урана и тория столь велики, что они сохранились в земной коре с момента ее образования. [c.308]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Литосфера— это часть Земли, из которой до настоящего времени черпались все сырьевые ресурсы. Большинство известных рудных месторождений было обнаружено благодаря тому, что они имели выход на поверхность Земли. Такие открытия в будущем возможны лишь в мало исследованных районах, например в Восточной Сибири, на Крайнем Севере, и в труднодоступных горных районах. Поскольку наиболее богатые и обширные поверхностные месторождения руд уже открыты, основные усилия будут направлены на поиск так называемых слепых месторождений, не выходящих на поверхность. В этом поиске важнейшую роль должны играть геохимические методы разведки, которые включают химические анализы проб почвы, природных вод, растительности и органов животных (печень рыбы) на искомые или сопутствующие элементы. Например, уран сопутствует фосфору, и это обстоятельство позволило обнаружить на Кубе богатейшие месторождения фосфоритов. Возможности геохимической разведки значительно расширились после разработки новых методов анализа, в частности метода атомной абсорбции. [c.65]

    Ванадий встречается часто, а уран редко когда оба эти элемента содержатся вместе, они взаимно мешают определению один другого так, ванадий, в зависимости от его количества, мешает осаждению большего или меньшего количества урана сульфидом аммония. Бериллий не принадлежит к числу обы чных составных частей горных пород в большинстве разделений он сопровождает алюминий. . [c.114]

    Экстракция ниобия из роданидных растворов широко используется в аналитической химии этого элемента, в частности, при определении его в минералах [1162], горных породах [1179, 1180], природных материалах [1174], металлах (стали [1163, И64], чистом железе [1181], уране [1173], тантале и его окиси [1177]) и других объектах [1178]. В качестве экстрагентов при этом обычно используют ТБФ [1162—1164], диэтиловый эфир [1164, 1173, 1174, 1177, 1178] и реже другие [1179—1181]. [c.200]

    Уран довольно широко распространен в природе. По распространенности он занимает 38-е место. Среднее его содержание в земной коре составляет 4-10 вес.%. Основная масса урана находится в изверженных горных породах, почва содержит 1,2" 10 5 — 9,3-10 %. Лишь ничтожная часть урана сосредоточена в рудах. Так как при выветривании уран переходит в растворенное состояние, то в воде рек содержится от 5-10 до 2 10 % урана. Содержание его в водах океана составляет [c.303]

    В базовом варианте опытно-промышленной печи для восстановления урана из оксидного сырья конструкция горна выполнена таким образом, чтобы восстановленный уран накапливался в ванне-накопителе с последующим сливом в сменную изложницу без остановки печи. Расчетное количество разового слива равнялось 200 кг урана. Общее количество шихты, загружаемое в шахту, составляло 3 т. [c.303]

    Определение количественного отношения радия к урану в руде является ее основной геохимической характеристикой. Для горных пород, достаточно старых и не подвергавшихся процессам выветривания и выщелачивания, это отношение отвечает состоянию радиоактивного равновесия между ураном и радием и равно [c.329]

    Небольшие количества урана имеются во всех изверженных породах, однако в наибольшей степени уран сосредоточен в граните и других породах с высоким содержанием натрия и калия и низким содержанием железа, кальция и магния. Например, обычный гранит содержит около 5,10 % урана, в то время как богатые щелочными металлами граниты горного хребта Колорадо содержат до 0,01% урана. [c.138]

    Уран широко распространен в природе и встречается в большом числе природных объектов. Горные породы, почва, воды рек, озер, морей и океанов, живые организмы, а также пришельцы из космоса — метеориты содержат в том или ином количестве различные соединения урана. Среднее содержание урана в земле уменьшается с возрастанием мощности слоя планеты [160]. В земной коре, до глубины 20—40 км, содержание урана колеблется от 2-10 до 4-10 вес.%, что значительно превышает, нанример, содержание вольфрама (Ы0 %), серебра (Ы0 5%) и ртути (7-10 %). Мантия земли (мощность 2900 км) содержит 1,2-10 , а ядро нашей планеты — 3-10 % и. Следует отметить, что данные о содержании урана в мантии и ядре земли носят оценочный характер. [c.257]

    Описаны абсорбциометрические методы определения тантала с метиловым фиолетовым — в рудах (для содержаний более 0,1%) [13, 227], металлическом цирконии, ниобии и гафнии [27] с родамином 6Ж и бутилродамином С — в рудах и горных породах [23, 24, 233, 234, 244] с кристаллическим фиолетовым — в тех же объектах [235, 236] с малахитовым зеленым — в железе, стали и металлическом ниобии [237], уране, цирконии и боре [239] флуориметрический метод с родамином 6Ж — в кремнии и его соединениях [79]. [c.148]

    Из этого следует, что радиоактивные элементы могут быть использованы как идеальные часы, ход которых во все эпохи формирования Земли как планеты подчинялся одному неизменному закону. Это позволяет оценивать возраст различных горных пород и самой Земли. Уран довольно широко распространен в земной коре. В любой урановой руде наряду с самим ураном содержатся продукты его распада, например свинец. Определяя в такой руде соотношение между количествами образовавшегося свинца и оставшегося урана и зная период полураспада последнего, можно вычислить время,, в течение которого происходило это радиоактивное превращение, т. е. возраст данной руды. Оценка возраста Земли, полученная таким способом, приводит к величине около 3 миллиардов лет. [c.270]


    Космические корабли Аполлон-11 и Аполлон-12 в 1969 г. совершили посадку в двух морях Луны, т. е. в плоских низменных областях ее поверхности, в Море Спокойствия и Океане Бурь. В обеих областях астронавты обнаружили грунт, образованный двумя видами материала кристаллическими горными породами вулканического происхождения, напоминающими базальт, а также брекчией и конгломератом горных пород, образованными разрушением и преобразованием обломков пород и пыли в течение всего геологического времени. Вулканические базальтоподобные образцы после доставки на Землю были датированы тремя изотопными методами калий-аргоновым, рубидий-стронциевым и уран-торий-свин-цовым. Всеми этими методами установлен один и тот же поразительно большой возраст между 3,6 и 4,2 млрд. лет. Это указывает, что лунные моря образовались при истечении лавы из недр Луны, которое происходило в первый миллиард лет лунной истории, насчитывающей всего [c.433]

    Ряд авторов определяет сумму алюминия и железа и вводит поправку на последнее после определения его в аликвотной части раствора [369, 567, 623, 751]. Метод титрования с дитизоном описан для определения алюминия в сталях, в металлическом уране и его сплавах [833, 1091], в цементе [623], в силикатах и горных породах [223а, 557, 567, 707, 751, 1244, 1288], в кислотных водах [639, 654] и в других материалах. [c.71]

    Арсенатно-иодометрическое определение натрия [288]. Метод основан на образовании натрийцинкуранилацетата, осаждении арсена-тов цинка и уранила и их иодометрическом определении по арсена-ту. Это повышает чувствительность определения, так как эквивалент по натрию равен /g молярной массы натрия. 1 мл 0,1 М раствора Na2S20g эквивалентен 0,29 мг натрия. При определении 0,25— 0,6 мг натрия погрешность определения 3—5% при определении 1,5 мг натрия 1%. Метод применим для определения натрия в несильноминерализованных водах [289] и в силикатных горных породах [290]. В последнем случае при определении 0,3—5,0 мг натрия абсолютная ошибка 0,03 мг. [c.69]

    Описанный метод применяют для определения марганца в сталях, чугунах, рудах [22, 39, 50, 186, 407, 408, 633, 669, 1018, 1085, 1101, 1179, 1506], в горных породах [754], различных сплавах [137, 1057, 1487], мартеновских шлаках [136, 207, 686, 1101], соединениях тория [245], никеле [145, 364], алюлшнии [614], биологических материалах [ИЗО], воде [542, 1018], почвах [1204] и др. При определении марганца в едких щелочах предварительно экстрагируют диэтилдитиокарбаминатный комплекс Мп(П), а затем разрушают его и окисляют Мп(П) до Mn(VII) персульфатом аммония. Чувствительность метода 1-10 % [379]. Простой метод определения марганца в серебре высокой чистоты состоит в осаждении серебра в виде Ag l и определении Мп в фильтрате с чувствительностью 10 —10 % и относительной ошибкой 2—7% [1079]. Определение марганца в уране основано на отделении последнего экстракцией смесью ТБФ и G I4 и измерении оптической плотности водного раствора при Ъ2Ъ нм после окисления Мп(П)до Mn(VII). Метод позволяет определять до 2 мкг Мп/з при навеске урана 2 г [1077]. Определение больших количеств марганца производят дифференциальным фотометрическим методом [50]. [c.55]

    Метод хроматографии иа бумаге используют для предварительного отделения марганца от урана при анализе последнего [771, 1299, 1гОО]. Так, при определении марганца и других примесей (Ср, Ni, Со, Си, d, Mo, Fe, Na и Au) в уране, используемом в реакторах [13001, производят отделение урана на бумаге Шлейхер — Шюлль 20 43А с помощью безводного диэтилового эфира, содержащего 5 объемн.% HNOg. Участок хроматограммы, содержащий примеси, затем облучают и производят дальнейшее разделение прпмесей с помощью бумажной хроматографии восходящим способом, используя смесь этанола, НС1 и HjO (75 20 5). Активность измеряют на у-спектрометре с кристаллом NaJ(Tl) и 128-канальном анализаторе импульсов. Аналогичный метод используют при анализе горных пород [911, 912], В активационном анализе очень часто применяют метод экстракции как самый простой и быстрый метод выделения и отделения элементов. С помощью метода экстракции произведено, например, отделение и очистка Мп с последующим у-спектрометрическим определением его в алюминии, сталях [835], уране [1205], биологических объектах [182, 649, 904, 1306], нефти [904], органических материалах [1451], трихлорметил-силане [142] (см. табл. 16). Отделение и очистку марганца проводят методами хроматографии в сочетании с экстракцией при анализах солей цинка [1319], бора [175], галлия [175] и горных пород 11317, 1386]. [c.91]

    Для определения урана в породах, в кислых вытяжках П. А. Волковым в 1953 г. был разработан метод отделения его от сопут- ствующих элементов путем осаждения фосфата четырехвалентного урана в кислой среде с применением соосадителя — циркония. Осадок фосфатов тщательно перемешивают с известным количеством фтористого натрия. Уран определяют флуориметрическим методом. По данным автора, небольшие количества циркония, находящиеся вместе с ураном в перле, не мешают определению урана флуориметрическим методом. Этот метод был применен [143] для анализа изверженных горных пород, содержащих от ЫО до 1-10 % урана. [c.160]

    Из всех многочисленных методов разложения урановых руд ir пород прежде всего следует остановиться на методе разложения концентрированной H l в присутствии окислителей (чаще всего Н2О2) при нагревании. Как показали исследования П. А. Волкова (1953 г.), уран практически полностью извлекается из большого числа руд (известняковых, железистых, углей, ряда силикатных), а также из изверженных горных пород [143] обработкой концентрированной НС1 в присутствии Н2О2 остающийся при этом нерастворимый остаток содержит менее Ио от всего урана. [c.345]

    Примечания, х — порядок распространения данного элемента. А — элементы являются основными составными частями живого вещества, гидросферы и атмосферы. Кислород, очевидно, наиболее важный элемент литосферы, в то время как углерод — составная часть осадочных горных пород. В — редкие газы, находящиеся в атмосфере. Не — выделяется при радиоактивном распаде ураиа и тория, но одио-временио теряется в мировое пространство. "Аг образуется при превращении радиоактивного К и является ведущим в изотопном составе атмосферного аргона. Содержание аргона и гелия в породах зависит от содержания радиоактивных изотопов и возраста. С — элементы в естественных условиях земной коры не встречаются. ) —данные о содержании элемента отсутствуют нлн скудные. Е — элементы при сутствуют как недолговечные радиоактивные атомы от распада рядов урана и тория. F —результат слабых процессов. захвата нейтронов ураном.  [c.94]

    В некоторых случаях, когда интерес представляет определение только отдельного иона, предварительное разделепие на аналитические группы является излишним. Так, например, можно хроматографически отделить и идентифицировать в горных породах уран наряду с большим числом различных катионов [7], причем сопутствующие ионы этому не мешают. Для этого расплавляют небольшую пробу горной породы в смеси фторида натрия и сернокислого кислого калия на платиновой проволочке, перл растворяют в нескольких каплях 4,7 н. НМОз и наносят на пластинку постепенно увеличиваю-ищеся количества полученного раствора. [c.466]

    Природный уран содерлсит несколько изотопов уран 238 (99,285%), уран 235 (0,71%), уран 234 (0,005%). Из урана 238 получают ядерное горючее — плутоний. Таким образом, природный уран является одним из источников получения естественного ядерного горючего — урана 235 и искусственного плутония 239. Урановые минералы встречаются в природе в виде небольших вкраплений (от сотых долей до нескольких процентов) в плотные горные породы. Первым этапом обработки урановых руд является обогащение. Методы переработки урановых концентратов зависят от их состава. [c.421]

    Экстракция с помощью дитизона применена для фотометрического определения меди в титане и титановых сплавах [257] меди и кобальта после их хроматографического разделения на силикагеле [258] меди, свинца и цинка в природных водах ивы-тяжках из почв [259] цинка и меди в биологических материалах [260] цинка в металлическом кадмии [261] и баббитах [262]. Экстракционное выделение дитизоната цинка использовано для последующего фотометрического определения цинка с помощью ципкона. МетЬд применен для определения цинка в чугуне [263]. Экстракционно-фотометрические методики определения кадмия с помощью дитизона предложены для определения кадмия в алюминии [264], нитрате уранила [2651 и металлическом бериллии [266]. Дитизонат таллия экстрагируют хлороформом. Содержание таллия определяют фотометрированием экстракта [267]. Аналогичным способом определяют таллий в биологических материалах [268]. Индий в виде дитизоната полностью экстрагируется хлороформом при pH 5 [269]. Экстракция комплекса индия с дитизоном применена для фотометрического определения индия в металлическом уране, тории, а также в их солях [270]. Свинец определяют в алюминиевой бронзе [271], теллуровой кислоте [272] и горных породах [273, 274] свинец и висмут — в меди и латуни [275], ртуть —в селене [276] серебро — в почвах, (методом шкалы) [277] ртуть — в рассолах и щелоках (колориметрическим титрованием) [278]. [c.248]

    По, содержанию натрия в ркеанах По рсадконакоплению По солнечно>1у излучению По температуре в, земной коре По радиоактивности -горных пород По отношению свинец/уран, в земной коре [c.993]

    СИЛЬВЙН [от латинизированного имени (Sylvius) голл. врача и химика Ф. Боэ], КС1 — минерал класса хлоридов. Хим. состав (%) К — 52,44 С1 — 47,56. Примеси бром, свинец, цезий, аммоний, уран, железо, барий, медь, таллий, марганец. Структура координационная, сингония кубическая, вид симметрии гексоктаэд-рический. Образует зернисто-кристаллические массы иногда встречается в гнездах и линзах в виде крупных кристаллов кубического, реже — октаэдрического габитуса. В прожилках обычно имеет волокнистое строение. Отмечаются выцветы С. на почве, стенках горных выработок и среди продуктов вулканических возгонов. Спайность совершенная по (100) (см. Спайность минералов). Плотность 1,99 г/см . Твердость 2,0. Хрупкий. Бесцветный и прозрачный в зависимости от количества микровключений газа, гематита или галита цвет становится молочно-белым, голубым, красным, желтым (см. Цвет минералов). Блеск стеклянный (см. Блеск минералов). Излом неровный (см. Излом минералов). Гигроскопичен, легко растворяется в воде. Изотропный, п = = 1,4904. Возникает в результате испарения природных вод, содержащих хлористый калий, в процессе перекристаллизации карналлита в соленосных отложениях и как продукт вулканической деятельности. Получают С. из водных растворов, [c.389]

    Если принять во внимание, что почти половина всех катионов осаждается аммиаком, а бо.1ьшая часть их также и другими реактивами, указанными в заголовке, то становится ясным, что осадки, полученные таким способом при анализе горных пород, минералов, руд и металлурических продуктов, должны иметь очень сложный состав. Например, исключая те элементы группы сероводорода, которые также осаждаются названными реактивами и которые, как предполагается, были удалены раньше, получим Следующий перечень элементов, которые могут встретиться в весомых и легко открываемых количествах в сложных случаях анализа изверженных, метаморфических или осадочных горных пород кремний, титан, цирконий, алюминий, железо, хром, ванадий, фосфор (изредка — уран), бериллий, тантал, ниобий и редкоземельные металлы. В этот список не вошли те элементы, которые могут попасть в осадок при непра- [c.112]

    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]

    В обычном ходе анализа горных пород поведение урана в значительной мере зависит от наличия двуокиси углерода и ванадия. В их отсутствие уран количественно осаждается аммиаком если, не ввести поправку на его содержание, точность анализа будет зависеть от метода, применяемого для определения железа. Наибольшая ошибка получается при определении железа, если последнее проводится титрованием перман-i-anaTOM после восстановления цинком, который восстанавливает уран, частично даже ниже, чем до четырехвалентного состояния. Поскольку при титровании перманганатом эквивалент ГегОз меньше эквивалента UgOg, то рассчитанное по разности содержание алюминия также будет яе совсем точным (несколько повышенным). При восстановлении же железа сернистым ангидридом, сероводородом или хлоридом олова (И) ошибка получается только лишь в рассчитанном по разности содержании алюминия, так как уран этими реагентами не восстанавливается. [c.523]

    Торий. Кларк тория, по данным 1950 г. [619], составляет 1,2-10" % это значит, что торий распространен в природе шире, чем многие лантаниды. Торий находится в рассеянном состоянии в различных горных породах, в морской воде и т.д. В количествах порядка 10 г/г пробы торий (в месте с ураном) найден в донных отложениях Антарктиды [795]. В Черном море найдено 796] 2,2-10- г/л тория и 2,5-10 г/л его изотопа — иония, в Азовском — примерно на один порядок больше, приче.м чем дальше от берега, тем меньше концентрация тория в воде. В больших или меньших количествах торий встречается е большинстве упомянутых выше редкоземельных минералов, общее же число торийсодержащих минералов достигает 160. Важнейшим промышленным минералом, тория является монацит, подробно описанный выше. К главнейшим собственно ториевым минералам относятся торит, торианит и отчасти чералит. [c.306]

    Уран встречается в минералах в виде четырех-. и шестива-лентных ионов, причем в шестивалентном состоянии он находится обычно в виде уранила, который играет роль основания в простых солях или образует комплексные соединения, чаще всего с ванадиевой, мышьяковой, фосфорной, кремневой, титановой, танталовой и ниобиевой кислотами. В таких соединениях катионами являются щелочные или щелочноземельные металлы, редкие земли, а также тяжелые металлы свинец, медь, висмут, железо, марганец 164]. В связи с этим состав урановых минералов очень разнообразен и сложен. Известно очень много (свыше 100) минералов урана. Кроме того, уран встречается в больших или меньших количествах в виде примеси в других минералах — редкоземельных, титановых, циркониевых, танталониобиевых и др. Будучи элементом рассеянным , уран встречается в очень незначительных количествах во многих горных породах, в углистых и нефтяных отложениях, в морской и других природных водах. [c.374]

    Экстракция дитизоном была применена для определения следов цинка в металлическом кадмии [62, 614], никеле [284, 1144], уране [684], сурьме [369], галлии высокой чистоты (галлий отделяли в виде HGa l4) [1452], солях различных элементов, не осаждаемых сероводородом [1276], в чугуне н стали [139, 602], двуокиси германия [1150], кислотах [1430], горных породах [960, 1451], метеоритах [736], при- [c.222]

    В 1801 г. профессор минералогии в Горном колледже в Мехико испанец А. Дель-Рио (1764—1849) при исследовании мексиканской свинцовой руды получил окрашенные в различные цвета соли неизвестного элемента, похожего свойствами на хром и уран. Он предложил для нового элемента название панхромий (от Trav и — окрашенный в различные цвета ). Получив [c.90]

    Описано [10, 127] фотометрическое определение мышьяка в силикатных горных породах. Из пробы после плавления и выщелачивания выделяющийся AsHs улавливают раствором, содержащим йод, йодистый калий и бикарбонат натрия, а затем после прибавления молибдатной смеси, фотометрируют. Таким же способом определяют мышьяк в металлическом уране [128]. [c.191]

    К флуоресценции в видимой области способны в основном два класса веществ 1) большое число минералов и неорганические твердые люминофоры и 2) органические и металлоорганические соединения, обладающие интенсивным поглощением в УФ-области. Что касается веществ первого класса, мы упомянем лишь метод определения следов урана в горных породах и природных водах [10]. К растворенной пробе добавляют Са(ЫОз)г и затем (медленно) ЫН4р. Образующийся при этом осадок СаРг захватывает уран в виде фторида. Осадок отфильтровывают, высушивают, прокаливают при 800 °С, затем измельчают. Получившуюся пудру спрессовывают в таблетки и исследуют на флуориметре. Как показано в цитируемой работе, возбуждение проводилось аргоновым ионным лазером при длине волны 488 нм. По данным авторов, предел обнаружения составляет 0,01 пг/мл. [c.159]

    В природе существуют три радиоактивных семейства ряд урана, родоначальником которого является долгоживущий изотоп U-238 (период полураспада 8- 10 лет), а конечным продуктом распада стабильный изотоп свинца РЬ-206 ряд тория — родоначальник изотоп Th-232 (период полураспада 10 лет), конечный продукт РЬ-208 ряд актиния, или точнее, актиноурана — родоначальник U-235, конечный продукт стабильный — Ph-207. Накопление РЬ-206 и РЬ-207 в природных объектах (горных породах, минералах, метеоритах и др.), содержащих уран, позволяет установить абсолютный геологический или космический возраст исследуемого объекта. [c.42]


Смотреть страницы где упоминается термин Горные урана: [c.354]    [c.141]    [c.42]    [c.65]    [c.598]    [c.20]    [c.303]    [c.274]   
Методы аналитической химии Часть 2 (0) -- [ c.0 ]

Полярографический анализ (1959) -- [ c.345 ]




ПОИСК





Смотрите так же термины и статьи:

Горный



© 2024 chem21.info Реклама на сайте