Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Отталкивание пространственное между атомами

    В переходном состоянии при реакции 5д 2 атом углерода фактически связан с пятью группами. Если эти группы велики по объему, то между ними возникнет значительное отталкивание, что вызовет пространственное затруднение при протекании реакции. Для бромистого этила скорость замены галоида на этоксигруппу почти в 20 раз меньше, чем для бромистого метила. В реакции изотопного обмена [c.190]


    Для определения числа и природы вращательных изомеров, а также заселенностей конформаций дивинилсульфида и его ana-, логов использованы методы атом-атомных потенциалов и карт потенциальной энергии [499]. Как уже отмечалось выше, положение минимумов на потенциальной поверхности внутреннего вращения определяется соотношением. двух конкурирующих факторов пространственного затруднения и р—я-взаимодействия. Первый фактор характеризует взаимодействие несвязанных между собой атомов, которое препятствует реализации плоских конформаций рассматриваемых молекул. Наибольшую роль пространственное затруднение должно играть в г мс-г ис-форме за счет сильного отталкивания. -водородных атомов винильных групп. Для расчета энергии пространственного затруднения избран метод атом-атомных потенциалов, количественно учитывающий способность молекулы к деформации валентных углов по сравнению с их значениями в ненапряженных молекулах. Второй фактор (р-я-взаимодействие) для каждого из двух внутренних вращений может быть представлен первыми двумя членами разложения в ряд Фурье — [c.174]

    Можно ожидать, что в реакции между гидроксил-ионами и хлороформом вклад в энергию отталкивания от трех атомов хлора составит около 6 ккал. За счет этого скорость реакции снизится в 25 ООО раз. Скорость реакции хлористого метила с гидроксил-ионами очень мала (А з = 6,67-10 ), а для реакции хлороформа получаем оценку 2,67-10" . В этом случае пространственные затруднения столь велики, что не дают осуществиться обычному механизму реакции, как это показано на рис. 8.7. Другой возможный механизм состоит в том, что гидроксил-ион приближается непосредственно к атому водорода, что приводит к отрыву последнего по схеме  [c.233]

    Дипольные моменты применялись также при исследованиях геометрии очень сложных систем с целью установления конфигураций и конформаций этих молекул, определения конформационного равновесия и взаимного влияния пространственно удаленных групп [150, 151]. Для таких сложных структур, как 5р-холестан-дион-3,17, определение координат атомов, необходимых для расчета дипольных моментов, с помощью векторного анализа оказывается чрезвычайно трудоемким. Поэтому обычно строится модель системы, на которой и измеряют углы [152, 153]. Точность рассчитанных моментов в этом случае определяется достоверностью выбранной модели. В рассматриваемом случае наблюдаемый дипольный момент (3,5 В) отличается от рассчитанного (3,04 В) по моде.чи системы неискаженных кресел (рис. 3-6, А) на величину (0,5 В), которая значительно превосходит ошибки эксперимента. В связи с этим было высказано предположение [152], что в равновесии с формой А присутствует 16% формы Б. Однако в настоящее время показано, что в структуре Б атом С-З находится слишком близко от 9а-водородного атома. Наиболее вероятно поэтому, что кольцо А имеет форму кресла, которая несколько уплощена за счет отталкивания между а-водородными атомами при С-7 и С-9 и атомами при С-2 и С-4. В равновесии с формой А может также находиться небольшое количество конформации В (см. разд. 7-4). [c.197]


    Пространственные затруднения возникают при присоединении заместителя к донорному атому или достаточно близко к нему, что создает взаимное отталкивание лигандов и приводит к ослаблению связи металл — лиганд. Это можно проиллюстрировать данными по устойчивости замещенных 8-оксихинолинатов меди (II) (рис. Х-1) [12]. Если заместитель входит в молекулу оксихинолина в любое положение, за исключением положения 2, то наблюдается хорошая корреляция между устойчивостью комплекса и основностью донорного атома  [c.230]

    Для двухэлектронной системы, такой, как атом гелия в состоянии электроны в синглетном состоянии (спины антипараллель-ны) имеют тенденцию к совместному стягиванию, тогда как в триплетном состоянии (спины параллельны) наблюдается об-ратное Этот факт является не результатом действия сил отталкивания между электронами, а следствием требуемого вида волновой функции, учитывающей принцип неразличимости электронов. Для атома гелия, в котором электроны находятся на ненаправленных ч-орбиталях, пространственное распределение электронов следующее для симметричного, или синглеттюго состояния наиболее вероятны три конфигурации — две, в которых один электрон находится ближе, а другой дальше от ядра, и третья, в которой оба электрона находятся одновременно одинаково близко от ядра для антисимметричного, или триплетного состояния наибольшую вероятность имеют только две конфигурации — один электрон находится ближе, а другой дальше от ядра. Так как з-орбитали не содержат угловой зависимости, электронная корреляция (корреляция между положениями электронов) будет только радиальной. Сточки зрения стереохимии интересны волновые функции, которые включают угловую зависимость. В связи с этим ниже более детально будет рассмотрен атом гелия в состоянии з -2р1. [c.201]

    В общем для процесса присоединения наличие атомов галогена при С-1 ингибирует радикальную атаку, в то же время галоген прн С-2 оказывает активирующее действие. Это видно из сопоставления относительных скоростей реакций (табл. 3.18) ингибирующее действие атома хлора при С-1 может быть связано как с пространственными, так и с полярными эффектами объемистого и электрофильного атома хлора. Однако атом фтора при С-1 ведет себя совершенно по-иному он не проявляет сколько-нибудь заметного ингибирующего влияния, ио крайней мере такого, которое может быть связано с пространственными эффектами, и, как было найдено, теплота полимеризации тетрафторэтилена равна 71 кДж/моль, что даже выше теплоты полимеризации этилена. Это и другие наблюдения, такие, как легкость вступления в реакции циклоприсоединения или нестабильность 1-фторалкинов, позволили предположить, что атомы фтора дестабилизуют л-элек-тронные системы в результате отталкивания между л-электрон-ными парами двойной связи С = С и несвязанными электронами фтора [7]. [c.688]

    Это влияние можно объяснить следующим образом. Образование карбокатиона сопровождается изменением гибридизации центрального углеродного атома от зр - до р -состояния. Заместители вокруг этого атома углерода теперь располагаются не по углам тетраэдра, а в плоскости, по верпшнам треугольника. Соответственно увеличивается расстояние между заместителями (изменение угла от 109 до 120°). Если центральный углеродный атом был связан с объемистыми заместителями, то переход его в р -состояние приведет к уменьшению отталкивания между группами и, следовательно, к снижению общей энергии системы. При замещении восстанавливается первоначальное стерическое напряжение молекулы, поэтому этот процеес в данном случае не выгоден. Напротив, отрыв протона от р-углеродного атома способствует дальнейшему снижению напряжения молекулы, и реакция направляется в сторону Е1. Явление пространственного ускорения реакции наблюдается не только при дегидратации спиртов, но также и в реакциях отщепления галогеноводорода от вторичных и третичных алкилгалогенидов. [c.231]

    В ЭТОМ случае различия между изотопными эффектами первого и второго рода в известной степени сглаживаются. В разд. IIIB, 2 было отмечено сходство между реакцией образования четвертичных аммонийных соединений и реакциями присоединения к тригональному атому углерода В случае аммиака или алифатических аминов образование четвертичных аммонийных солей сопровождается лишь небольшими изменениями углов между N — Н-связями. Ароматические амины по сравнению с ними являются, по-видимому, более плоскими. Поэтому изотопные эффекты, наблюдаемые в реакциях образования четвертичных аммонийных солей из ароматических аминов, более близки к эффектам первого рода. Тем не менее различия, которые имеются между аммиаком и алифатическими аминами, с одной стороны, и ароматическими аминами—с другой, по существу не очень велики. Это объясняется главным образом тем, что в обоих случаях изотопные эффекты определяются в основном симметричными деформационными колебаниями N — Н-связи. Как мы отмечали в разд. ПА, ангармоничность валентных колебаний N — Н-связи вносит малый вклад в различия полярных свойств изотопных молекул. Кроме того, в разд. П1В, I указывалось, что изотопные эффекты, наблюдаемые в реакциях образования четвертичных аммонийных солей, можно с равным успехом объяснить как полярными, так и пространственными факторами. Это, таким образом, дает нам возможность рассматривать некоторые из наблюдаемых эффектов дейтерирования, как эффекты, обусловленные изменением полярности. В таком случае основным фактором, ответственным за появление вторичных изотопных эффектов, будет более эффективное отталкивание электронов для дейтерированных соединений в направлении неподеленной электронной пары аминогруппы или в направлении химической связи, образующейся с этой неподеленной парой. [c.158]


    Двухкоординационные соединения. Обычно координационное число кислорода равно двум, и в большинстве своих соединений он образует две простые связи, как, например, в воде, эфирах, спиртах и т. д. Во всех таких соединениях имеются две пары несвязывающих электронов, которые играют роль в стереохимии. Существует несколько объяснений того положения, что угол X—О—X-связи более близок к тетраэдрическому, чем к 90 прямой угол можно было бы ожидать, если бы кислород использовал для образования связей две чистые р-орбитали. В соответствии с одним из этих объяснений, предполагается, что гибридизация орбиталей кислорода приближается к тетраэдрической 5р . Таким образом, как и в случае трехвалентных соединений азота, неспаренные электроны не распределены симметрично около атома кислорода, а занимают пространственно направленные гибридные орбитали. Углы К—N—К в соединениях КзМ, по-видимому, всегда меньше 109° предполагается, что это является следствием большего отталкивания между несвязывающими электронными парами и электронами связи, чем отталкивание между электронами двух связей это явление в свою очередь объясняют тем, что электроны связи концентрируются в основном в направлении химических связей. Какова степень правдоподобности этого объяснения, не ясно, но тем не менее в некоторых соединениях кислорода углы между связя.ми даже превышают 109°, как это иллюстрируют следующие примеры 0С12 (- 113°), (СНз)20 (ИГ) и озон (127°). Следует отметить, что нет достаточных оснований предполагать, что центральный атом имеет тенденцию образовывать четыре эквивалентные 5р -гибридные орбитали и что все отклонения углов от точных тетраэдрических должны являться следствием влияния других сил. Если все четыре орбитали исполь- [c.200]

    Как уже отмечалось, при трансоидном отщеплении преобладает реакционная конформация со скошенным расположением всех трех заместителей Н, и ЫМез [формула (47)], невыгодная по пространственным соображениям. Участие этой конформации в реакции объясняют по-раз-ному. Одно из объяснений основывается на том, что в конформации (46), приводящей к транс-изомеру, отщепляющийся водород прикрыт с обеих сторон (заместителями Н и К ), в то время как в конформации (47), приводящей к цис-изомеру, подход к этому атому водорода с одной стороны свободен. Согласно другому объяснению, в конформации (46) отталкивание между группами " ЫМез и СНгК приводит к сближению группы СНгН с подлежащим отщеплению водородом и таким образом затрудняет подход основания, необходимого для осуществления реакции. В конформации (47), ведущей к образованию ц с-алкена, то же взаимодействие делает отщепляемый водород пространственно более доступным. [c.276]

    На примере галогенирования де ла Мар [261] показал, что скорости замещения в случае указанных водородсодержащих заместителей нельзя считать нормальными, а скорости замещения при наличии метилированных заместителей представлять как аномально заниженные (на 2—3 порядка) вследствие вторичных пространственных эффектов, обусловленных отталкиванием между N- и 0-метильной группой и вызывающих нарушение сопряжения с бензольным кольцом. Если поменять местами орпго-водородный атом и метильный заместитель у гетероатома, то по сравнению с неметилированным соединением скорость уменьшится гораздо менее значительно — только в 5 раз, что соответствует ожидаемому изменению при введении метильной группы в кольцо (в л1ета-положение к галогену). [c.316]

    Наиболее стабильными конформациями замеш енных циклогексанов будут те, в которых заместитель или самый больший заместитель, если их несколько, занимает экваториальное положение, так как при этом отсутствует пространственное 1,3-отталкивание между двумя аксиальными заместителями аа или а а ) или между одним заместителем и водородом. Когда замеш аемая группа, например галоген или этерифицированная оксигрунна, в основной конформации занимает аксиальное положение, в этой конформации она может замеш аться по механизму с инверсией конфигурации. Однако, когда замещаемая группа занимает экваториальное положение, в этой конформации она труднее замещается по механизму 8 2 вследствие затруднения инвертирующей конфигурацию атаки нуклеофила из-за экранирующего влияния кольца. Конформация субстрата должна сначала превратиться в менее устойчивую. Пространственная ориентация замещения не будет меняться, так как 3 2-иравило совершенно однозначно, но скорость замещения уменьшится. [c.444]

    В свободных ионах переходных металлов (т. е. в газообразном состоянии) пять орбиталей -электронов йху, жг) 1/2, х -уг И ) эквивалентны В энергетическом отношении. Однако в ходе комплексообразования, в результате электростатического воздействия лигандов на центральный атом, пять -орбиталей теряют эквивалентность. Вследствие электростатического отталкивания лиганда энергии на орбиталях, направленных к лигандам, будут выше, чем энергии на орбиталях, более отдаленных от отрицательного заряда лигандов. На рис. 6 показано пространственное расположение пяти -орбиталей. Энергия каждой из них зависит от симметрии комплекса (от пространственного расположения лигандов). Например, в октаэдрическом комплексе лиганды находятся на осях х, у и г. Из рис. 6 видно, что только доли орбиталей . .2 у2 и направлены непосредственно к лигандам. Следовательно, энергии на этих орбиталях относительно выше, а на орбиталях ху, жг и уг, расположенных между лигандами, ниже. Если комплекс имеет симметрию правильного октаэдра, т. е. каждый лиганд находится на одинаковом расстоянии от центрального атома, то энергии - и 2 -орбиталей будут одинаковы (такие орбитали идентичного типа обозначают как eg), энергии на остальных орбиталях жу, у2 и х2 также одинаковы (их обозначают как t2g-орбитали). Следовательно, пятикратно вырожденный -уровень свободного иона расщепляется под влиянием кристаллического поля на дважды и трижды вырожденные подуровни. Нарушение октаэдрической симметрии приводит к дальнейшему расщеплению подуровней. [c.47]

    В общем случае первичные соединения вступают в реакции замещения 5дг2-типа легче, чем вторичные, а 5л 2-реакции третичных соединений протекают с большим трудом, если вообще имеют место. В переходном состоянии 5л 2-реакций 146 центральный атом углерода увеличивает свое координационное число от четырех до пяти и пространственное взаимодействие между заместителями должно быть более сильным, чем в основном состоянии. Алкильные группы занимают большее пространство, чем атомы водорода, следовательно, такое стерическое отталкивание должно - быть более сильным в ряду третичные > вторичные > первичные соединения. [c.130]


Смотреть страницы где упоминается термин Отталкивание пространственное между атомами: [c.219]    [c.113]    [c.190]    [c.436]    [c.132]    [c.172]    [c.219]    [c.194]    [c.211]    [c.20]    [c.219]    [c.46]    [c.33]    [c.194]    [c.211]   
История стереохимии органических соединений (1966) -- [ c.136 ]




ПОИСК





Смотрите так же термины и статьи:

Отталкивание



© 2025 chem21.info Реклама на сайте