Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Безызлучательная конверсия интеркомбинационная конверсия

    Молекула обладает набором энергетических состояний (рис. 28). Молекула, попавшая на верхние колебательные уровни любого возбужденного состояния, быстро теряет избыток колебательной энергии при столкновениях с окружающими молекулами. Это процесс колебательной релаксации. Безызлучательный переход между электронными состояниями одинаковой мультиплетности называется внутренней конверсией, аналогичный переход между состояниями разной мультиплетности — интеркомбинационной конверсией. [c.51]


    Зависимость флуоресценции от температуры. В отсутствие тушителей эффективность флуоресценции фф определяется относительными скоростями излучательного процесса кф, с одной стороны, и безызлучательных процессов интеркомбинационной и внутренней йд конверсии, с другой. Скорость излучательного процесса не зависит от температуры, поэтому изменения фф отражают изменения кк и йд. Последние увеличиваются с ростом температуры, поскольку на верхние колебательные уровни состояния попадает все большая часть молекул и вероятность перехода через область пересечения потенциальных поверхностей возрастает. При пони ке-нии температуры обе константы скорости стремятся к предельным значениям, соответствующим интеркомбинационной или внутренней конверсии с самого нижнего, колебательного уровня Слабо флуоресцирующее вещество может стать при низкой температуре сильно флуоресцирующим. Зависимость выхода флуоресценции от температуры можно представить уравнением [c.62]

    Безызлучательный переход на колебательный подуровень трип-летного состояния интеркомбинационная конверсия)  [c.201]

    Безызлучательный переход из в интеркомбинационная конверсия) А Т )—>-к 8 ). [c.201]

    Формально различаются процессы обмена электронной энергией, разрешенные правилом Д5 = 0 или запрещенные им. Термин внутренняя конверсия (1 ) применяется к безызлучательным переходам между состояниями одинаковой мультиплетности, тогда как название интеркомбинационная конверсия (IS ) относится к обмену энергией между состояниями различных спиновых систем . Процессы как внутренней, так и интеркомбинационной конверсии происходят без изменения полной (элект-ронной-+-колебательной) энергии, и поэтому соответствующие волнистые линии горизонтальны (т. е. ни поступательная, ни вращательная энергия не возникает во внутримолекулярных процессах обмена электронной энергией см. разд. 4.5). [c.61]

    В этом случае график Штерна — Фольмера (зависимость 1//иа.г от [М]) будет иметь в точке пересечения значение (1-ЬА1/Л)/ погл и производную ikq[N. ]/A)[ j,onu поэтому kq/A нельзя определить без измерения / эл и /погл. Однако необходимо знать только отношение /изл//погл, а не абсолютные значения интенсивностей. Следует заметить, что если энергетические спектры возбуждения и излучения не идентичны, то необходимо измерять отношение потоков квантов, а не отношение потоков энергии. Отношение /изл//погл есть квантовый выход ф1 процесса люминесценции (фг — квантовый выход флуоресценции, фр — квантовый выход фосфоресценции), поэтому значение модифицированной кривой Штерна — Фольмера 1/ф —[М] в точке пересечения будет определять отношение скоростей радиационных и безызлучательных процессов. Следовательно, в идеальном случае можно определить скорость внутренней и интеркомбинационной конверсии в люминесцирующей системе. [c.88]


    Фосфоресценция, как правило, происходит после заселения уровня Г) посредством безызлучательного синглет-триплетного перехода с уровня 5], который в свою очередь возбуждается в результате поглощения света. Состояние 1 обычно имеет меньшую энергию, чем состояние 5ь поэтому долгоживущее излучение (фосфоресценция) является более длинноволновым, чем короткоживущее излучение (флуоресценция). Относительная интенсивность флуоресценции и фосфоресценции зависит от скорости излучения и интеркомбинационной конверсии с 5 абсолютный квантовый выход зависит также от меж- и внутримолекулярных процессов переноса энергии, фосфоресценция конкурирует не только со столкновительным тущением Ти но и с интеркомбинационным переходом на 5о. Разница между общей скоростью образования триплетов из 51 и скоростью фосфоресценции может быть использована для определения эффективности процесса 7 1 5о в условиях, когда процессами бимолекулярного тушения можно пренебречь. [c.101]

    Одним из основных факторов, повлиявшим на углубление нашего понимания фотохимии, было развитие в течение нескольких последних десятилетий методов обнаружения и идентификации промежуточных продуктов фотохимических реакций. К ним относятся атомы, радикалы и ионы как первичные продукты фотолиза, возбужденные состояния этих первичных продуктов, возбужденные состояния, возникающие в первоначально поглощающем свет материале, включая триплетные, которые участвуют затем в флуоресценции, фосфоресценции и безызлучательных переходах (внутренняя конверсия и интеркомбинационная конверсия). Именно возможность изучения этих активных интермедиатов на коротких временных шкалах привела к появлению утонченных экспериментов с временным разрешением, которые рассматриваются в следующем разделе. Эксперименты с временным разрешением позволяют зондировать фотохимическую систему в заданный момент времени вскоре после поглощения кванта света, когда интересующие промежуточные продукты еще сохраняются. В этом разделе дается краткий обзор наиболее важных методик, пригодных для изучения промежуточных продуктов, с целью ввести читателей в круг обсуждаемых исследований с временным разрешением. Здесь не место для обсуждения теоретических основ спектроскопии будет лишь сделана попытка указать методики, которые могут быть с пользой применены. Одна из тем, которая многократно возникает, — это вопрос о том, как лазеры упростили более старые способы спектроскопических измерений и сделали возможными совершенно новые способы исследований. [c.194]

    Эффективность флуоресценции фу определяется конкуренцией излучательного процесса kf и безызлучательных процессов интеркомбинационной /г,,с и внутренней конверсии. Скорость излучательного процесса не зависит от температуры, поэтому изменения Ф/ с температурой связаны с изменением и Поскольку с увеличением температуры на верхние колебательные подуровни состояния попадает все большая часть молекул и вероятность перехода через области пересечения потенциальных поверхностей возбужденного синглетного, триплетного и основного состояний возрастает, то и й с увеличиваются с ростом температуры. При понижении температуры обе константы скорости стремятся к предельным значениям, соответствующим интеркомбинационной или внутренней конверсии с самого нижнего колебательного подуровня 5(. Если при комнатной температуре вещество флуоресцирует слабо, при низкой температуре оно может стать сильно флуоресцирующим. Ввиду большого разнообразия безызлучательных процессов трактовка зависимости квантового выхода флуоресценции от температуры обычно затруднена. Наряду с вышеуказанными процессами это могут быть взаимодействия типа переноса заряда с растворителем, заселение высоколежащих триплетных состояний, специфическое электронно-колебательное взаимодействие и т. д. Зависимость квантового выхода флуоресценции от температуры можно представить уравнением  [c.147]

    При интеркомбинационной конверсии (безызлучательная инверсия спина) молекула, находящаяся в возбужденном синглетном состоянии (5 ), может достигнуть первого триплетного состояния (71). Время жизни триплетного состояния (Г]) колеблется от нескольких минут до 10 с. [c.263]

    После того как молекула была возбуждена поглошением излучения, два типа безызлучательных процессов происходят столь быстро, что они предшествуют флуоресценции, фосфоресценции и химической реакции. К этим быстрым процессам относятся а) внутренняя конверсия и б) интеркомбинационная конверсия. [c.549]

    Интеркомбинационной конверсией называются безызлучательные переходы между состояниями различ гай мультиплетности. Так как по причине, упомянутой выше, первое триплетное возбужденное состояние обычно имеет более низкую энергию, чем первое синглетное возбужденное состояние, то наиболее характерным примером интеркомбинационной конверсии является переход 5]-- [c.549]


    Если возможны какие-либо иные — безызлучательные — процессы дезактивации, сопоставимые по скорости со скоростью радиационного процесса, вероятность флуоресценции уменьшается (падает квантовый выход). Безызлучательная дезактивация электронной энергии возбуждения может осуществляться за счет внутренней и интеркомбинационной конверсии. При внутренней конверсии дезактивация энергии происходит между двумя уровнями одинаковой мультиплетности, например "г 5 . Более важна интеркомбинационная конверсия, сопровождающаяся переходом молекулы с синглетного состояния одного типа (например, 5 ) на триплетный уровень другого типа (Гял )- Время жизни возбужденного триплетного состояния больше, чем синглетного из этого состояния также возможны радиационные (фосфоресценция) и безызлучательные переходы. Ввиду того что время жизни триплетного состояния велико, велика и вероятность перехода энергии возбуждения в кинетическую энергию молекулы. Именно поэтому фосфоресценция проявляется главным образом в замороженных растворах, где вероятность колебательных и вращательных движений молекулы снижена. [c.12]

    Интеркомбинационная конверсия, протекающая через триплетное состояние, является одним из основных процессов безызлучательной деградации низшего синглетного возбужденного состояния. Этот же механизм лежит в основе температурного тушения. [c.12]

    Интеркомбинационная конверсия (g и g ) изображена для простоты так, как будто бы она идет сразу на нижний колебательный уровень соответствующего триплетного состояния. На самом же деле сначала осуществляется собственно интеркомбинационная конверсия на верхний колебательный уровень триплетного состояния, а затем, уже в этом состоянии, происходит быстрая потеря колебательной энергии (см. рис. 12). Интеркомбинационная конверсия из нижнего возбужденного синглета ( ) часто занимает время порядка излучательного времени жизни флуоресценции (10 с). Доказательства существования интеркомбинационной конверсии из высщих возбужденных состояний ( ) пока немногочисленны, и. пренебречь этим процессом нельзя только в тех случаях, если он успешно конкурирует с безызлучательной конверсией, т. е. занимает время порядка 10 2с. Что касается обратных интеркомбинационных переходов — из триплетной системы в синглетную, то конверсия в основное состояние (т) часто происходит медленно (10 —10 с в зависимости от условий). Измерить ее скорость, одпако, весьма непросто, так как ее трудно отделить от процессов тушения. Из других процессов интеркомбинационной конверсии мы будем иметь дело лишь с переходом с нижнего триплетного уровня на первый возбужденный синглетный уровень. Этот переход ответствен за явление замедленной флуоресценции типа Е (см. раздел I, В,4), но идет он только при не очень большой разности энергий, когда возможна термическая активация триплетных молекул на колебательный уровень, равный по энергии нижнему уровню возбужденного синглетного состояния. Символ е на рис. 23 относится к брутто-процессу термической активации, за которой следует интеркомбинационная конверсия. [c.73]

    В отсутствие тушителей эффективность флуоресценции (фу) определяется относительными скоростями излучательного процесса ( /), с одной стороны, и безызлучательных процессов интеркомбинационной (kg) и внутренней кп) конверсии — с другой [см. уравнение (69)]. Можно ожидать, что скорость излу- [c.82]

    Элементы первой группы не содержат 4/-уровней ниже триплетного уровня, и, следовательно, интеркомбинационная конверсия с триплетного уровня невозможна. Элементы второй группы обладают низколежащими 4/-состояниями, через которые происходит размен триплетной энергии. Авторы отметили грубую корреляцию между числом 4/-уровней, на которые может происходить переход, и эффективностью тушения люминесценции. Отсутствие линейчатого испускания у этих редкоземельных элементов было приписано безызлучательной дезактивации в результате вибронного взаимодействия с лигандами и, следовательно, с растворителем. Те члены этой группы, от которых можно ожидать испускания в видимой области, содержат много близко расположенных уровней, через которые может происходить эта безызлучательная дезактивация, тогда как члены третьей группы имеют несколько заметных промежутков, отделяющих уровни испускания от более низких уровней. [c.458]

    Некоторые соединения имеют высокие выходы люминесценции, и интеркомбинационная конверсия на уровни редкоземельных элементов должна быть достаточно эффективной, чтобы конкурировать с высокой скоростью безызлучательной конверсии, которую испытывают триплетные состояния в жидком растворе. [c.458]

    Максимальное значение Ф = 1 достигается при реакциях типа интеркомбинационной конверсии с хорошими триплетными генераторами, например бензофеноном. Химические реакции молекул, находящихся в триплетном состоянии, часто протекают с существенно меньшими квантовыми выходами. Определение соотношений между химической реакцией и процессами дезактивации (преимущественно безызлучательной) является важной проблемой фотохимии. [c.52]

    Другая возможность частичной потери энергии возбуждения связана с безызлучательным переходом между состояниями 51 и Г], называемым интеркомбинационной конверсией IX и заключающимся в изменении ориентации спина электрона в молекуле для переведения ее на возбужденный колебательный уровень состояния Т. Затем происходит переход на самый нижний колебательный уровень состояния Т УР). [c.35]

    Если учесть, что обычно можно пренебречь безызлучательной дезактивацией состояния Si по сравнению с процессами флуоресценции и интеркомбинационной конверсии [c.114]

    П, Б и И, В. В этих процессах поглощаемая люминесцирующей молекулой энергия расходуется безызлучательным путем. Это внутренняя конверсия, интеркомбинационная конверсия, перенос энергии, а также дезактивация, вызываемая столкновениями с другими молекулами растворенного вещества. Тушение люминесценции, таким образом, является фундаментальным явлением, характерным для системы при определенных условиях, и не зависит от способа проведения эксперимента, в котором оно исследуется. Напротив, эффекты внутреннего фильтра представляют собой методический артефакт. Они не влияют на первичные процессы испускания света возбуледенными молекулами, но уменьшают наблюдаемую интенсивность люминесценции за счет поглощения либо возбуждающего света, либо люминесценции внутри исследуемого образца. Паркер и Рис [150] рассмотрели два типа эффектов внутреннего фильтра а) дополнительное поглощение возбуждающего света и б) поглощение испускаемой люминесценции. Мы обсудим их при рассмотрении трех основных типов расположения образца, показанных на рис. 78. [c.211]

    Безызлучательные процессы, конкурирующие с флуоресценцией, — это внутренняя конверсия интеркомбинациониая конверсия в триплетное состояние (А ) и различные процессы тушения флуоресценции (С)]. Все эти процессы непосредственно конкурируют за дезактивацию возбужденных молекул. Следовательно, доля возбужденных молекул, дезактивированных посредством флуоресценции, которая называется квантовым выходом флуоресценции фр, равна [c.86]

    Скорости переходов. При изучении фотолюминесценции необходимо знать временные характеристики излучательных и конкурирующих с ними безызлучательных процессов дезактивации возбужденных состояний. Для излучательных процессов характерны следующие времена. Поглощение света происходит за время порядка одного колебания световой волны, т. е. около 10 с. Флуоресценция из самого нижнего возбужденного синглетного состояния происходят от 10 с (для я —я-переходов) до 10 (для я —п-переходов). Излучательные времена триплетных состояний лежат в пределах от 10 2 до с. Безызлучательные переходы из верхних возбужденных состояний происходят за время порядка 10 2 с. Скорость внутренней конверсии с нижнего возбужденного синглета в основное состояние часто сравнима со скоростью флуоресценции. Интеркомбинационная конверсия из нижнего синглетного состояния протекает за время порядка излучательного времени жизни флуоресценции. Р1нтеркомбинационные переходы из триплета в основной синглет происходят сравнительно медленно (Ю — 10 с в зависимости от условий). [c.57]

    Поглощение излучения на синглет-триплетном переходе мало, поскольку он запрещен в такой же степени, как запрещена фосфоресценция на триплет-синглетном переходе. Следовательно, возбуждение верхнего фосфоресцирующего уровня непосредственно из основного является неэффективным, гораздо чаще фосфоресценция возникает в результате радиационного распада триплетных уровней, заселяемых безызлучательными переходами с синглетных уровней, возбуждаемых поглощением из основного состояния. Диаграмма последовательности событий показана на рис. 4.1. В результате поглощения заселяется уровень Si" после быстрой релаксации (по крайней мере в конденсированных средах) по колебательным уровням молекула оказывается на уровне Si°, где она может потерять энергию либо за счет излучения (фосфоресценции), либо в результате безызлучательного перехода на уровень T l — интеркомбинационной конверсии (IS ), либо в результате безызлучательного перехода на уровень — внутренней конверсии (1 ). Возможно, это может показаться странным, что ISG на уровень Ti , являющийся запрещенным по спину согласно правилам отбора для безызлучательных переходов, может эффективно конкурировать с разрешенной по спину флуоресценцией или внутренней конверсией на So " однако фосфоресценция наблюдается во многих случаях, когда можно предположить, что 1 5i 5o относительно неэффективна. Для полного понимания процессов фотохимии молекул необходимо знать эффективность (квантовый выход) всех процессов, происходящих в ней. Даже если возбужденные частицы не вступают в химические реакции, не подвержены процессам разложения или тушения, то необходимо уметь определять квантовый выход флуоресценции ((pf), фосфоресценции (фр), интеркомбинационной конверсии " So (fis ) и внутренней конверсии 51 5о(ф1с). Учитывая, что суммарная эффективность всех процессов равна единице, получим [c.84]

    Безызлучательный переход из 81 в 8 с последующим рассеиванием избыточной энергии в виде теплоты или инфракрасного излучения называется внутренней конверсией. Безызлучательный переход в состояние Тх называется интеркомбинационной конверсией. Несмотря на то что переход этого типа является запрещенным, поскольку связан с изменением мультиплетности, вероятность его в ряде случаев оказывается достаточно большой. Вследствие резонансного характера перехода возиикает колебательно-возбужденное состояние однако избыточная энергия колебаний достаточно быстро рассеивается и дальнейшие события происходят преимущественно с термически равновесным триплетным состоянием. [c.157]

    Молекулы в триплетном состоянии легко теряют свою энергию в различных безызлучательных процессах. Они могут дезактивироваться молекулами с неспаренными электронами, например кислородом, или в столкновениях с другими окружающими молекулами. Поэтому фосфоресценция в жидких растворах при комнатной температуре наблюдается чрезвычайно редко. Как правило, фосфоресценцию наблюдают в жестких средах или при пониженных температурах. Син-глет-триплетное поглощение очень слабо. Поэтому заселение триплетного уровня производится не прямым поглощением света в полосе синглето-триплетного перехода, а путем интеркомбинационной конверсии через синглетное состояние. [c.128]

    Имеется два пути заселения триплетных состояний. 1) Прямое заселение в результате запрещенных по спину -> -переходов мало эффективно. Молярный коэффициент Г, -поглощения равен -10" . 2) Заселение триплетных состояний через систему синглетных состояний. В результате рассмотренных выше процессов колебательной релаксации и внутренней конверсии молекула очень быстро ( 10 с) возвращается на нижний колебательный подуровень первого синглетного состояния. Вследствие достаточно небольшой разницы в энергии 5, - и T -состояний последнее заселяется за счет интеркомбинационной конверсии с нижнего колебательного уровня 5, -состояния на имеющий ту же полную энергию колебательный уровень — Г, -состояние. Интеромбинационная конверсия — безызлучательный переход между состояниями различной мультиплетности. Затем вследствие быстрого процесса колебательной релаксации молекула перейдет на нижний колебательный подуровень — T -состояние. Безызлучательная дезактивация —> 5 конкурирует с излучательным Г, -> -иерехоцом-фосфоресцещией. Фосфоресценция — излучательный переход между состояниями различной мультиплетности. [c.302]

    У замещенных нафталина, в основном, наблюдается та же зависимость, что и у замещенных бензола. В работе [16], где изучались люминесцентные свойства метилзамещенных нафталина при низких температурах, отмечается, что сумма квантовых выходов флуоресценции и фосфоресценции приблизительно равна единице. Особо подчеркнута роль пространственного строения молекул. Даже малые отклонения от копланарности повышают вероятность безызлучательной дезактивации. Наиболее сильно интеркомбинационная конверсия проявляется у 1,8- и 1,4,5,8-тетраметилнафталинов. [c.28]

    Константа скорости интеркомбинационной конверсии из нижнего электронно-возбужденного синглетного состояния в триплетное состояние — один из важнейших фотохимических параметров. На первый взгляд может показаться, что столь же легко осуществляется и другой, аналогичный процесс — интеркомбинационная конверсия с нижнего колебательного уровня триплетного состояния на верхний колебательный уровень основного состояния (процесс с на рис. 12). В действительности же этот процесс обычно в Ю —Ю раз медленнее, чем интеркомбинационная конверсия из возбужденного синглета в триплет. Эта особенность, весьма загадочная на первый взгляд, — чрезвычайно благоприятное обстоятельство, ибо в противном случае, т. е. при близких скоростях двух упомянутых процессов, было бы очень трудно наблюдать долгоживущую фотолюминесценцию. Очевидно, что если бы безызлучательный 5о-переход имел константу скорости 10 С , молекула не располагала бы временем, достаточным для осуществления запрещенного по спину процесса— Г1-> 5о-фосфоресценции. С другой стороны, если бы 5] -> Трконверсия была столь же медленной, что и - 50-конверсия, то она не могла бы эффективно конкурировать с флуоресценцией и заселением триплета при поглощении света нельзя было бы пренебречь только при очень высоких ин- енсивностях света. Фосфоресценция была бы очень редким явлением, а фотохимические превращения происходили бы совсем иначе. [c.46]

    Интеркомбинационная конверсия, процессы межмолекудярно-го переноса энергии и химические реакции конкурируют со всеми другими процессами дезактивации (флуоресценцией, фосфоресценцией, безызлучательной дезактивацией). Эффективность интересующего процесса определяется квантовым выходом  [c.52]

    При поглощении света молекула из синглетного основного состояния (Зо) переходит, как правило, в возбужденное синглетное, так как согласно правилу спинового отбора (Д5 = 0) переход с изменением спина (например, 5о- Тй Д5 = 1) запрещен. Первоначальный переход в состояние 5] при поглощении света не обязателен если фотон обладает достаточной энергией, то молекула может перейти в энергетически более высокое состояние 8п п = 2, 3. ..). Однако с константой скорости, большей 10 с Ч т. е. за время, меньшее 10 с, осуществляется переход молекулы на уровень состояния, расположенный достаточно близко подобного рода безызлучательные переходы между двумя электронными состояниями одинаковой мультиплетности, называются внутренней конверсией. Скорость безыз-лучательных переходов, приводящих к уровню 5 , обычно так велика, что другие физические (а тем более химические) процессы не могут с ними конкурировать. Уровень 51 отделен от основного состояния 5о существенно большим энергетическим интервалом, чем от уровня 5з, и безызлучательный переход с уровня на уровень 5о требует большего времени, чем при дезактивации. . Благодаря малой энергетической разности уровней 5] и Тх реализуется переход хотя он требует изменения спина. Безызлучательные цереходы между двумя электронными состояниями различной мультиплетности называются интеркомбинационной конверсией. Так происходит заселение уровня Т при прямом возбуждении (рис. 23). При сенсибилизированном возбуждении поглотившие свет молекулы сенсибилизатора 2 могут передавать электронную энергию с уровня на [c.183]

    Важным условием процессов дезактивации — внутренней и интеркомбинационной конверсии — является наличие точек пересечения потенциальных кривых соответствующих электронных состояний. Это показано на рис. 3. 0. В этих точках оба состояния имеют вырожденные (эквиэнергетические) колебательные уровни. Высоким скоростям процессов способствует расположение точки пересечения вблизи низкого (или нулевого при низкой температуре) колебательного уровня высшего состояния и относительно низкого колебательного уровня низшего состояния. Чем меньше разность энергий низших колебательных уровней электронных состояний, участвующих в данном переходе, тем больше вероятность именно такого типа пересечения потенциальных кривых. Это объясняет быструю безызлучательную дезактивацию всех высших синглетных состояний в состояние [c.81]

    При этом, очевидно, безызлучательная дезактивация п,п - до я,л -состояния происходит медленнее, чем реакция присоединения. Для успешного протекания реакции нужно, чтобы значение Ег олефина было больше, чем у кетона. В противном случае будет нроисходить перенос энергии к олефину и последующая димеризация его. Так как у моноолефинов энергия триплетов обычно выше 336 кДж/моль (80 ккал/моль), то это требование чаще всего выполняется. Напротив, сопряженные ди- и полиолефины с энергией триплетов ниже 252 кДж/моль (60 ккал/моль) обычно не вступают в реакцию Патерно — Бюхи. Правда, в последнее время было найдено, что 1,3-бутадиены, если они вводятся в очень высоких концентрациях, дают с ацетоном аддукт с четырехчленным циклом. В этих условиях, очевидно, уже п,п -синглетное состояние может быть вовлечено в реакцию, конкурирующую с интеркомбинационной конверсией. 1,4-Хиноны обычно дают сииро-оксетаны, но часто с одновременным образованием по двойной связи С = С цикло-бутановых аддуктов, которые иногда оказываются единственными. Реакции о-хинонов также ведут к оксетанам наряду [c.255]


Смотреть страницы где упоминается термин Безызлучательная конверсия интеркомбинационная конверсия: [c.495]    [c.65]    [c.240]    [c.105]    [c.123]    [c.506]    [c.190]    [c.360]    [c.51]    [c.65]   
Молекулярная фотохимия (1967) -- [ c.16 , c.79 ]




ПОИСК





Смотрите так же термины и статьи:

Интеркомбинационная конверсия



© 2024 chem21.info Реклама на сайте