Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ И КОМПЛЕКСНЫЕ КРИСТАЛЛЫ

    Общепризнанного определения понятия "комплексное соединение" нет. Это обусловлено разнообразием комплексных соединений и их характерных свойств. В лабораторной практике химики чаще всего используют соединения в твердом и растворенном состоянии. Для этих условий можно дать следующее определение комплексных соединений комплексными называют соединения, в узлах кристаллов которых находятся комплексы, способные к самостоятельному существованию в растворе. Следует отметить, что такое определение, конечно, далеко не исчерпывает существа проблемы и применимо лишь в известных пределах. [c.108]


    Большой класс соединений в неорганической химии представляют собой координационные или комплексные соединения. Комплексными соединениями называются определенные молекулярные соединения, при сочетании компонентов которых образуются положительно или отрицательно заряженные сложные ионы, способные к существованию как в кристалле, так и в растворах (Гринберг). [c.44]

    Комплексными соединениями называют определенные молекулярные соединения, при сочетании компонентов которых образуются положительно или отрицательно заряженные сложные ионы, способные существовать как в кристалле, так и в растворах (А. А. Гринберг). Следовательно, комплексные, или молекулярные, соединения представляют собой более высокую ступень развития материи, чем простые, или атомные, химические соединения. Состав и свойства их не могут быть удовлетворительно объяснены с точки зрения классической теории валентности, которой мы пользуемся при составлении формул соединений, состоящих только из двух атомов. Комплексных соединений имеется чрезвычайно много. Можно с полным основанием утверждать, что комплексообразование представляет собой широко распространенное явление природы. Среди комплексных соединений могут быть как электролиты, так и неэлектролиты. В аналитической химии чаще всего приходится иметь дело с комплексными солями, [c.48]

    В лабораторной практике химики чаще всего имеют дело с соединениями в твердом или растворенном состоянии. Для этих условий можно дать следующее определение комплексных соединений комплексными называются соединения, в узлах кристаллов которых находятся комплексы, способные к самостоятельному суш,ествованию в растворе. [c.109]

    При электролизе комплексных солей концентрации ионов металла несравненно меньше. Убыль их пополняется обычно только за счет диффузии, тогда как основная масса металла в виде комплексных анионов перемещается к аноду. Вследствие этого около тех точек поверхности катода, где происходит выделение кристаллов металла, раствор весьма быстро обедняется ионами металла и катионы начинают разряжаться и у других точек поверхности катода, где их концентрация больше. Таким образом, осаждение происходит равномерно по всему катоду, и осадок получается более ровным и плотным. Поэтому комплексные соединения металлов применяются в электрогравиметрическом анализе очень частя. [c.439]


    Методом ЭПР исследуются молекулы, атомы и радикалы в газовой фазе, матрицах, растворах (в том числе и сольватированные электроны), в кристаллах и порошках. Из спектра ЭПР и особенностей его тонкой и сверхтонкой структуры можно получать важные сведения об электронной конфигурации атомов и ионов, о свойствах атомных ядер. ЭПР — один из наиболее чувствительных методов обнаружения и идентификации свободных радикалов, установления их электронной конфигурации и геометрии. Метод ЭПР применяется и для исследования комплексных соединений, в частности соединений переходных и редкоземельных металлов. При этом величина -фактора и его зависимость от направления определяются силой и симметрией [c.148]

    Осаждение из растворов комплексных соединений. Главным достоинством электролиза растворов комплексных соединений является получение плотного осадка металла. Так, серебро выделяется из азотнокислого раствора в виде отдельных длинных кристаллов, легко отваливающихся от катода. Напротив, из цианистого комплекса серебра получается равномерный плотный осадок. Кроме того, применение комплексообразователей изменяет величины потенциалов выделения отдельных металлов, что создает новые возможности для разделения. [c.199]

    Выполнение работы. Отвесить на техно-химических весах 5 г пентагидрата сульфата меди и поместить в химический стакан. Рассчитать количество 25%-ного раствора аммиака, необходимое для образования комплексного соединения отмерить мензуркой удвоенный объем (для увеличения выхода продукта, так как растворимость комплексного соединения уменьшается при добавлении аммиака). Растворить в стакане взвешенную соль в отмеренном количестве аммиака и тщательно перемешать стеклянной палочкой до полного растворения соли. К полученному раствору добавить 10 мл этилового спирта (растворимость комплексного соединения в спирте меньше, чем в воде) и оставить кристаллизоваться на 20—25 мин. Отфильтровать выпавшие кристаллы на воронке Бюхнера и отсоединить колбу с воронкой от насоса. Затем промыть кристаллы на фильтре два раза смесью равных объемов спирта и 25%-ного аммиака. Для этого налить в воронку смесь спирта с аммиаком, дать смеси пропитать осадок и снова присоединить колбу к насосу. Если не отключать насос, то Спирт слишком быстро проходит через осадок и промывание получается недостаточным. [c.129]

    Взвесить на техно-химических весах бюкс, перенести в него кристаллы с фильтра и поместить в сушильный шкаф при температуре 50—60 С на 20 мин. Затем охладить и снова взвесить бюкс. Рассчитать выход комплексного соединения по отношению к взятому пентагидрату сульфата меди (И). [c.129]

    Комплексные соединения составляют наиболее обширный и разнообразный класс неорганических веществ. К ним принадлежат также многие элементоорганические соединения, связывающие воедино ранее разобщенные неорганическую химию и органическую химию. Многие комплексные соединения — витамин В12, гемоглобин, хлорофилл и другие — играют большую роль в физиологических и биохимических процессах. Исследование свойств и пространственного строения комплексных соединений оказалось чрезвычайно плодотворным для кристаллохимии, изучающей зависимость физико-химических свойств веществ от структуры образуемых ими кристаллов, и породило новые представления о природе химической связи. К ценным результатам привело применение комплексных соединений и в аналитической химии. [c.354]

    Рентгеноструктурным методом. Координационная формула комплексного соединения, находящегося в кристаллическом состоянии, может быть непосредственно установлена путем определения взаимного положения атомов и молекул в кристалле рентгеноструктурным методом. Однако для этого требуется вырастить достаточно крупный и неискаженный кристалл комплексного соединения, что не всегда возможно. [c.356]

    Методы современной квантовой химии распространяются на все более сложные объекты. Квантово-химические расчеты позволяют описать не только молекулы, состоящие из большого количества атомов, природу ковалентной, ионной и других типов внутримолекулярных химических связей, но и в ряде случаев рассмотреть межмолекулярные взаимодействия и глубже понять особенности комплексных соединений, металлических и полупроводниковых кристаллов, сольватов, объединений взаимодействующих частиц в так называемые кластеры, промежуточных переходных состояний, возникающих в ходе химического превращения, и т. д. [c.48]

    Комплексными соединениями называются определенные молекулярные соединения, образованные сочетанием отдельных компонентов и представляющие собой сложные ионы или молекулы, способные к существованию как в кристалле, так и в растворе.  [c.92]

    Разбавьте раствор приблизительно равным объемом спирта и отцентрифугируйте образовавшиеся при этом кристаллы [Си (NH. )4] 504 Н2О — комплексного соединения, растворимость которого в спирто-водной смеси значительно меньше, чем в воде. [c.109]


    Существуют и другие способы выделения твердой фазы из раствора, например путем добавления в раствор какого-либо специально подобранного вещества, которое снижает растворимость выделяемого вещества этот способ получил название высаливания. При проведении так называемой аддуктивной кристаллизации в исходный раствор вводится реагент, образующий с выделяемым веществом менее растворимое комплексное соединение — аддукт. Здесь мы имеем пример проведения процесса кристаллизации в сочетании с химической реакцией. Для полноты извлечения вещества из раствора процесс иногда осуществляют в противоточном варианте раствор подается в один конец колонного аппарата, а реагент вводится в другой конец этого аппарата. Кристаллы полученного аддукта отфильтровывают и подвергают разложению и очистке (термораспад с последующей перекристаллизацией выделяемого вещества из специально подобранного растворителя, перегонка с водяным паром и т. д.). Способ комплексообразования применяется и для химического связывания примесей в соединения, легко отделяемые от основного вещества образование осадка при этом не обязательно. [c.151]

    При исследовании комплексных соединений предполагают,что на процесс /(-поглощения влияют только атомы, ближайшие к поглощающему. Допустимость такого предположения подтверждается совпадением рентгеновских спектров одного и того же соединения в различных средах (например, в растворах и кристаллах). [c.254]

    Общепризнанного определения понятия комплексное соединение нет. Это обусловлено разнообразием комплексных соединений и нх характерных свойств. В лабораторной практике химики чаще всего имеют дело с соединениями в твердом и растворенном состоянии. Для этих условий можно дать следующее определение комплексных соединений комплексными назьшаюжя соединения, в узлах кристаллов которых находятся комплексы, способные к самоспюятель- [c.94]

    Для рассмотрения этого случая обратимся прежде всего к взаимодействию ионов с молекулами воды. Как уже отмечалось ранее (V 4), под действием создаваемого ионом электрического поля молекулы воды определенным образом ориентируются и затем притягиваются к иону противоположно заряженным концом диполя. За счет такого притяжения в растворе образуется гидратированный ион. Допустим теперь, что раствор все более концентрируется. На известной стадии из него станут выделяться кристаллы растворенного вещества, заключающие в своем составе и рассматриваемый ион. Если при этом непосредственно окружающие его в растворе молекулы воды связаны с ним непрочно, то вода не войдет в состав кристалла. Напротив, если связь иона с молекулами воды достаточно прочна, то в состав кристалла он войдет с некоторым числом молекул кристаллизационной воды. В результате получится кристаллогидрат данного вещества, представляющий собой по существу комплексное соединение. Например, фиолетовый кристаллогидрат СгС1з-6Н20 является в действительности комплексным соединением [Сг(ОН2)б]С1з, в котором около комплексообразователя (Сг " ) удерживаются во внутренней сфере шесть молекул воды. Подобным же образом как комплексные соединения следует рассматривать и многие другие кристаллогидраты солей. [c.244]

    Из формулы О — 5)/5 следует, что чем выше будет растворимость образующегося осадка и чем ниже концентрация осаждаемого веш ества, тем меньше будет относительное пересыщение, тем ченьшее число первичных кристаллов будет возникать и тем круптее они будут. Таким образом, для получения крупнокристаллических осадков необходимо в процессе осаждения повышать растворимость осадка и понижать концентрации осаждаемого и осаждающего ионов. Существует ряд способов понижения концентрации реагирующих ионов при формировании осадков. Самым простым из них является разбавление растворов перед осаждением и медленное (по каплям) при постоянном перемешивании прибавление раствора осадителя к исследуемому раствору (перемешивание нужно для того, чтобы в отдельных местах раствора не повышалась концентрация осадителя, т. е. не возникало так называемое местное пересыщение). Очень эффективным способом понижения концентрации осаждаемого иона является связывание его в комплексное соединение средней прочности. В этом случае достаточно низкая концентрация осаждаемого иона в растворе создается за счет частичной ионизации комплексного соединения. При добавлении иона-осадителя из-за образования малорастворимого соединения равновесие ионизации комплекса будет сдвигаться, но концентрация осаждаемого иона все время будет оставаться низкой. Например, если связать Со2+ в комплексное [c.101]

    Растворы солей хрома (III) обычно имеют сине-фиолетовым цвет, но при нагревания становятся зелеными, а спустя некоторое время после охлаждения снова приобретают прежнюю окраску. Это изменение окраски объясняется образованием изомерных гидратов солей, представляющих собой комплексные соединения, в которых все или часть молекул воды координационно связаны во внутренней сфере комплекса. В некоторых случаях такие гидраты удалось выделить в твердом виде. Так, кристаллогидрат хлорида хрома (JII) r ls- HjO известен в трех изомерных формах в виде сине-фиолетовых, темно-зеленых н светло-зеленых кристаллов одинакового состава. Строение тих изомеров можно установить на основании различного отношения их свежеприготовленных растворов к нитрату серебра. При действии последнего на раствор сине-фиолетового [c.655]

    Рассмотрим фазовое равновесие в трехкомпонентной системе вода — две соли с одноименным ионом . На рис. 50 представлена изотермная проекция диаграммы состояния этой системы. Соли не образуют с водой гидратов и двойных солей, комплексных соединений или твердых растворов. Вершины треугольника Розебума отвечают чистым компонентам Н. 0, РХ и QX. Точка А показывает концентрацию соли РХ в насыш,енном водном растворе, а точка В — концентрацию соли рх в насыщенном водном растворе этой же соли. Кривая АС характеризует растворимость соли РХ в водных растворах соли РХ разного состава, а кривая ВС — растворимость соли рХ в водных растворах соли РХ. В точке С раствор насыщен обеими солями Любая точка на поле между вершиной Н.20 и кривой АСВ отвечает ненасыщенным растворам солей. Любая точка на поле ЛС (РХ) представляет собой двухфазную систему, состоящую из раствора двух солей и твердой соли РХ. Любая точка на поле СВ (QX) — система, состоящая из раствора двух солей и твердой соли РХ. Область (РХ)С(РХ) соответствует трехфазным системам в ней сосуществуют насыщенный обеими солями раствор состава С и кристаллы РХ и ОХ. Если взять ненасыщенный раствор, отвечаюнгий фигуративной точке М, и постепенно испарять воду, то по мере удаления воды количественное соотношение между солями в системе остается постоянным. В связи с этим фигуративные точки, отвечающие составам систем в процессе выпаривания, будут лежать на прямой (НаО) Е. В точке а начнут выделяться кристаллы соли РХ. Для определения состава раствора, соответствующего фигуративной точке Ь, проводим конноду через вершину треугольника РХ и точку Ь до пересечения с точкой на кривой АС. [c.201]

    В ходе проведенных экспериментов были сделаны выводы, что депрессорные присадки типа "Paramins" обладают стабилизирующим действием в отношении кристаллов парафина, инактивны на границе раздела фаз углеводород —воздух углеводород —дистиллированная вода. Инактивность присадки может служить характеристикой ее депрессорного действия, а депрессорные присадки типа "Paramins" способны образовывать определенные комплексные соединения с ПАВ, в результате чего активность присадки как депрессатора понижается. [c.132]

    Обратимся вновь к координационным системам, о которых уже упоминалось при обсуждении различных типов элементарных ячеек кристаллов. Координационные системы всегда возникают вокруг ионов при растворении электролитов (ионные сольваты). В подобных системах, называемых комплексными соединениями, встречаются настолько разнообразные и измен- [c.119]

    Исследование комплексного соединения l u( N113)4] SO4. Внести по несколько кристаллов полученной соли в 4 пробирки и растворить в небольшом количестве воды. Определить в одной из них наличие сульфат-иона, добавив соответствующий реактив. Исследовать прочность полученного комплексного иона для этого во вторую пробирку поместить железный гвоздь. Выделяется. ли медь на железе из раствора медного купороса На раствор в третьей пробирке подействовать раствором оксалата аммония. Выпадает ли осадок оксалата меди В четвертую пробирку добавить раствор сульфида аммония. Что наблюдается Поместить несколько кристаллов соли в сухую пробирку и слегка нагреть  [c.129]

    Выполнение работы. В пробирке нагреть насыщенный раствор молибдата аммония. Наблюдать выпадение кристаллов (ЫН4)йМо,024-пН20. Это соединение относится к изополисоединениям молибдена и может рассматриваться как комплексное соединение (ЫН4)в[Мо(Мо04)в]>пН20. [c.235]

    Раствор отфильтровывают от активного угля на воронке Бюхнера. Осадок на фильтре промывают небольшим количеством горячей воды, подкисленной хлористоводородной кислотой (I%-ной, чтобы растворить возможно выделившиеся кристаллы комплексного соединения). Фильтрат переливаю.т в химический стакан и охлаждают в кристаллизаторе со льдом или снегом. Для осаждения комплексного соединения к раствору (под тягой ) добавляют концентрированную хлористоводородную кислоту в расчете 5 мл на 3 г взятой навески o l2-6H20. Выпавшие кристаллы отфильтровывают н 1 воронке Бюхнера, промывают 10 мл спирта, сушат в сушильном шкафу при 70—80 °С и взвешивают. Рассчитывают выход продукта (в процентах) и полученное вещество сдают преподавателю. [c.117]

    Обширный класс комплексных соединений представляют санд-вичевые комплексы, родоначальником которых является ферроцен, Ферроцен представляет собой желто-оранжевые кристаллы металлоорганического соединения в котором атом железа располагается между двумя высокосимметричными пятичленными кольцами, образованными атомами углерода (см, схему 13.7). [c.369]

    В кристаллах вследствие регулярного расположения частиц существуют сильные электромагнитные поля, действующие на частицы и их электронные орбитали. Действие кристаллическо го поля на орбитали зависит от их расположения в пространст ве между узлал. и кристаллической решетки. При действии кристаллического поля энергетически равноценные р-, й- и /-орби тали изолированных атомов становятся неравноценными. Особенно сильно такая неравноценность орбиталей проявляется н комплексных соединениях, находящихся как в кристаллическом, так и в растворенном состоянии в виде нонов. Влияние природы лигандов на электронные орбитали комплексообразователя и свойства комплексных соединений объясняет теория поля лигандов. [c.198]

    Лигандами являются обычно анионы (они образуют так называемые ацидокомплексы) или нейтральные молекулы, поскольку приближение положительно заряженного лиганда к иону металла энергетически невыгодно. Тем не менее известны примеры комплексных соединений с лигандами — катионами. Как правило, при этом положительный заряд удален от донорного атома. Так, в кристалле (МгН5)22п(804)2 катион Zn + координирует катион гидразиния через незаряженный атом азота  [c.80]

    При исследовании комплексных соединений используются спек-тры поглощения и спектры люминесценции в видимой и УФ-области, по которым можно получить два типа информации относящуюся к многокомпонентным системам (растворы, полиморфные кристаллы) п к индивидуальным соединениям. Последний тип информации получают при исследовании кристаллов, газообразных комплексных соединений и соединений, доминирующих в растворе, а также для сольватов металлов за счет большого избытка растворителя. Можно добиться доминирования одной формы в растворе за счет направленного сдвига равновесия, можно выделить полосы индивидуальных форм в кристаллах и растворах, уменьшая или увеличивая концентрацию сосуществующих форм. [c.240]

    Как видно, из спектра ЭПР л особенностей его тонкой и сверхтонкой структуры можно получать важные сведения об электронной конфигураций атомов и ионов, о свойствах атомных ядер. Для химиков ЭПР ценен как один из наиболее чувствительных методов обнаружения и идентификации свободных радикалов, установления их электронной конфигурации и. геометрии. Найда из спектра ЭПР газов, растворов, кристаллов (порошков) значение Н, отвечающее резонансной линии, по (19.15) вычисляют -фактор. Последний используют для идентификации радикалов, чему Ьпособствует вьгявление сверхтонкой структуры спектра. По я-фактору можно судить о симметрии радикала, а также определить энергии отдельных орбиталей. Сверхтонкое расщепление в спектре позволяет определить заселенность. у- и р-орбиталей атома с магнитным ядром в радикале, а отсюда — электронйое распределение и в известных случаях — валентный угол. Так, например, именно метод ЭПР сказал решающее слово в пользу угловой структуры радикала СН2. Метод ЭПР применяется и для исследования комплексных соединений, в частности соединений переходных и редкоземельных металлов. Величина -фак-тора и его зависимость от направления при этом определяются силой И симметрией ло.ия, создаваемого лигандами [к-6]. [c.78]

    Формула Капустинского (39.18) широко применяется в термохимии для расчета некоторых неизвестных теплот. Так, по формуле (39.19) цикла Борна — Габера можно найти теплоту образования кристалла, если известны теплоты образования крнов и энергия решетки. Последнюю легко рассчитать по уравнению Капустинского. Аналогично можно найти неизвестную теплоту образования газообразного иона и связанные с ней величины, например сродство атома к электрону. Если в узлах решетки находятся сложные ионы (ионы SO 4- в NajSQt, NH/ в ННц,С1и др.), то, пользуясь термохимическим значе-. нием энергии решетки, можно по формуле Капустинского рассчитать эффективный радиус сложного иона. Эти эффективные так называемые термохимические радиусы пригодны затем для расчета по формуле (39.18) энергии решеток, содержащих сложные ионы. Эта формула и ее модификации широко использованы в химии комплексных соединений К. Б. Яцимирским [к-8]. Зная экспериментальные теплоты растворения солей и энергии решетки по Капустинскому, можно рассчитать из термохимического цикла теплоты сольватации солей, широко используемые в теории растворов. [c.170]

    Теория кристаллического поля. В основе теории лежат фундаментальные труды Бете (1929) и Ван Флека (1932). Первоначально теория рассматривала расщепление ато1У1ных термов в кристалле и применялась для объяснения магнитных свойств кристаллов. Впоследствии она была использована также для объяснения спектров поглощения и ряда других свойств комплексных соединений переходных металлов и лантаноидов. Основные идеи теории  [c.237]


Смотреть страницы где упоминается термин КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ И КОМПЛЕКСНЫЕ КРИСТАЛЛЫ: [c.259]    [c.362]    [c.439]    [c.582]    [c.585]    [c.156]    [c.145]    [c.108]    [c.282]    [c.76]    [c.128]    [c.183]    [c.161]    [c.34]   
Смотреть главы в:

Электронное строение и химическая связь в неорганической химии -> КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ И КОМПЛЕКСНЫЕ КРИСТАЛЛЫ




ПОИСК







© 2024 chem21.info Реклама на сайте